heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26387 
+5

If  x + y =2  and  xy = 23 ,  then what is  x^2 + y^2  ?

$$(x+y)^2=x^2+2xy+y^2 \quad | \quad -2xy\\\\
x^2+y^2 =(\underbrace{x+y}_{=2})^2-2\underbrace{xy}_{=23}\\\\
x^2+y^2 = 2^2-2*23\\\\
x^2+y^2 = 4-46\\\\
x^2+y^2 = -42$$

.
29.01.2015
 #26
avatar+26387 
+5

Hi Melody,

my calculation with your picture of the triangle without trigonometry:

I.  The triangle BED is an right angle triangle ( Thales Theorem ). See : http://www.mathopenref.com/thalestheorem.html

 

II.  The triangle AEB is equilateral so the side EB = r ! ( You have worked out this )

 

III. We have the Altitude on Hypotenuse Theorem in a right triangle : EB * EB = BH * BD . See: http://www.dummies.com/how-to/content/how-to-solve-problems-with-the-altitude0nhypotenus.html

with EB = r and BD = d = 2r  we have: r*r = BH * 2r   or   r = BH * 2   or  $$\small{\text{
$
\boxed{BH = \frac{r}{2}}
$
}}$$

 

IV. Now we have the Geometric mean Theorem in a right triangle:  BH * HD = x * x

with BH = r/2 and HD = d - r/2 = 2r - r/2. See: https://en.wikipedia.org/wiki/Geometric_mean_theorem

$$\small{\text{
$
\dfrac{r}{2}\left(
2r-\dfrac{r}{2}
\right)=x^2,\ \quad
r^2-\dfrac{r^2}{4} = x^2 ,\ \quad
\dfrac{3}{4} r^2 = x^2 ,\ \quad
\dfrac{\sqrt{3}}{2}r = x
$
}}\\\\
\small{\text{
The side is
$
2x = \sqrt{3}*r
$
}}
\small{\text{
and $ r = \frac{9}{2} = 4.5 $ we have the side
= 4.5*\sqrt{3}
$
}}$$

.
29.01.2015