Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26398
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26398 
+5

(without using l'hopital's rule) how to do you prove that:

lim x->0 (tan3x)/x =3 ? 

\small{\text{  $  \boxed{ \lim\limits_{x\to0}  \left(  \dfrac{ \tan{(3x)} } { x } \right)   \qquad \tan{ (3x) } &= (3x)+\dfrac13 (3x)^3+\dfrac{2}{15}(3x)^5+\dfrac{17}{315}(3x)^7+\dotsb  } % boxed  $  }}$\\\\\\$  \small{\text{  $  \lim\limits_{x\to0}\left(  \dfrac{ \tan{(3x)} } { x } \right)  =  \lim\limits_{x\to0}\left(  \dfrac{   (3x)+\dfrac13 (3x)^3+\dfrac{2}{15}(3x)^5+\dfrac{17}{315}(3x)^7+\dotsb  } { x } \right)  =  \lim\limits_{x\to0}\left(  \dfrac{   x \left( 3+\dfrac13 3^3x^2+\dfrac{2}{15}3^5x^4+\dfrac{17}{315}3^7x^6+\dotsb \right)  } { x } \right)  $  }}$\\\\\\$  \small{\text{  $  =  \lim\limits_{x\to0}\left(   3+\dfrac13 3^3x^2+\dfrac{2}{15}3^5x^4+\dfrac{17}{315}3^7x^6+\dotsb \right)= \textcolor[rgb]{1,0,0}{3}  $  }}

.
30.01.2015
 #4
avatar+26398 
+5

Rewrite to polar form re ^ iθ, where θ is an angle in radians

z=a+bireiϕ r=a2+b2ϕ={arctan(ba),a>0arctan(ba)+π,a<0 and b0arctan(ba)π,a<0 and b<0π2,a=0 and b>0π2,a=0 and b<0 

 

I.

   z=3 a=3, b=0 r=(3)2+02=3 a<0, b=0: ϕ=arctan(ba)+π=arctan(03)+π=0+π=πz=3=3eiπ

 

II.

z=1i a=1, b=1 r=(1)2+(1)2=2 a>0, b<0: ϕ=arctan(ba)=arctan(11)=π4z=1i=2eπ4i

 

III.

z=5i a=0, b=5 r=(0)2+(5)2=5 a=0, b<0: ϕ=π2z=5i=5eπ2i

 

29.01.2015
 #2
avatar+26398 
+5

If  x + y =2  and  xy = 23 ,  then what is  x^2 + y^2  ?

(x+y)2=x2+2xy+y2|2xyx2+y2=(x+y=2)22xy=23x2+y2=22223x2+y2=446x2+y2=42

.
29.01.2015
 #26
avatar+26398 
+5

Hi Melody,

my calculation with your picture of the triangle without trigonometry:

I.  The triangle BED is an right angle triangle ( Thales Theorem ). See : http://www.mathopenref.com/thalestheorem.html

 

II.  The triangle AEB is equilateral so the side EB = r ! ( You have worked out this )

 

III. We have the Altitude on Hypotenuse Theorem in a right triangle : EB * EB = BH * BD . See: http://www.dummies.com/how-to/content/how-to-solve-problems-with-the-altitude0nhypotenus.html

with EB = r and BD = d = 2r  we have: r*r = BH * 2r   or   r = BH * 2   or   BH=r2 

 

IV. Now we have the Geometric mean Theorem in a right triangle:  BH * HD = x * x

with BH = r/2 and HD = d - r/2 = 2r - r/2. See: https://en.wikipedia.org/wiki/Geometric_mean_theorem

\small{\text{  $  \dfrac{r}{2}\left(   2r-\dfrac{r}{2}  \right)=x^2,\ \quad  r^2-\dfrac{r^2}{4} = x^2 ,\ \quad  \dfrac{3}{4} r^2 = x^2 ,\ \quad  \dfrac{\sqrt{3}}{2}r = x   $  }}\\\\  \small{\text{  The side is   $  2x = \sqrt{3}*r  $  }}  \small{\text{  and $ r = \frac{9}{2} = 4.5 $ we have the side  = 4.5*\sqrt{3}   $  }}

.
29.01.2015