what is the explicit equation for the terms (1,6) (2,18) (3,54)
$$\boxed{y=ax^2+bx+c}\\
\begin{array}{lrcl}
(1): & \quad 6 &=& a*1^2+b*1 +c \\
(2): & \quad 18 &=& a*2^2+b*2 +c \quad | \quad : 2 \\
(3): & \quad 54 &=& a*3^2+b*3 +c \quad | \quad : 3 \\
\hline
(1): & \quad 6 &=& 1a+b + c \\
(2): & \quad 9 &=& 2a+b +\frac{1}{2} c \\
(3): & \quad 18 &=& 3a+b +\frac{1}{3} c \\
\hline
I: (2)-(1): & 9-6=3 &=& 2a+b +\frac{1}{2}c-(1a+b+c) = a -\frac{1}{2} c\\
II: (3)-(2): & 18-9=9 &=& 3a+b +\frac{1}{3}c-(2a+b+\frac{1}{2}c)= a -\frac{1}{6}c\\
\hline
II-I: & 9-3=6 &=& a-\frac{1}{6}c-(a-\frac{1}{2}c) = \frac{1}{3}c \\
\textcolor[rgb]{1,0,0}{c} &\textcolor[rgb]{1,0,0}{=}& \textcolor[rgb]{1,0,0}{18}\\
\hline
I: & 3 &=& a - \frac{1}{2}18 = a-9 \\
\textcolor[rgb]{1,0,0}{a} &\textcolor[rgb]{1,0,0}{=}& \textcolor[rgb]{1,0,0}{12}\\
\hline
(1): & 6 &=& 12 + b + 18 = 30 + b \\
\textcolor[rgb]{1,0,0}{b} &\textcolor[rgb]{1,0,0}{=}& \textcolor[rgb]{1,0,0}{-24}\\
\end{array}
\\
\boxed{y=12x^2-24 x+18 }\\$$
.