Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #8
avatar+26396 
+5

OABC is a square. M is the mid-point of OA, and Q divides BC in the ratio 1:3. AC and MQ meet at P.  If O to A = a, O to C = c .  Express O to P in terms of a and c.

1.   If Q=c+34a and M=12a so line ¯MQ is 12a+λ(QM)=12a+λ(c+14a) 

2.   Line ¯AC is a+μ(ca) 

3.

 The intersection of the line ¯MQ with the line ¯AC is $$ the point P=12a+λ(c+14a).$$ We equate: 12a+λ(c+14a)=a+μ(ca) $$ so λ(c+14a)μ(ca)=12a $$ The perpendicular vector of (ca) is (c+a), because we have a square and $$ (ca)(c+a)=0, because the dot-product of vectors $$ perpendicular to each other is a Zero. $$ We multiply our equation with (c+a) and see what passed: 

$\\$\small{\text{   $  \lambda (\vec{c}+\frac{1}{4}\vec{a}) (\vec{c}+\vec{a}) - \mu \underbrace{( \vec{c}-\vec{a}) (\vec{c}+\vec{a})}_{dot-product = 0} = \frac{1}{2}\vec{a} (\vec{c}+\vec{a})   $  }}  $\\$\small{\text{   Now we can dissolve after $\lambda$ and receive for $\lambda$:  }}   $\\$\small{\text{   $   \lambda = \dfrac{  \frac{1}{2}\vec{a} (\vec{c}+\vec{a}) }  {(\vec{c}+\frac{1}{4}\vec{a}) (\vec{c}+\vec{a})   }  $  }}  $\\$  \boxed{  \small{\text{   $\vec{P} = \frac{1}{2}\vec{a} + \lambda (\vec{c}+\frac{1}{4}\vec{a}) $}} = \lambda \vec{c} + (\frac{1}{2}+\frac{\lambda}{4})\vec{a}  $  }}}

 

11.12.2014