how to check that 2814749767109 and 59482661568307 are relatively prime
GCD(59482661568307, 2814749767109 ) with Euclidean algorithm:
$$\frac{59482661568307 }{2814749767109}
= \frac{59482661568307 -21*2814749767109}{2814749767109}
= \frac{372916459018 }{2814749767109}\\\\
= \frac{372916459018 }{2814749767109}
= \frac{372916459018 }{2814749767109-7*372916459018}
= \frac{372916459018 }{204334553983} \\\\
= \frac{372916459018 }{204334553983}
= \frac{372916459018-204334553983 }{204334553983}
= \frac{168581905035 }{204334553983}\\\\
= \frac{168581905035 }{204334553983}
= \frac{168581905035 }{204334553983-168581905035}
= \frac{168581905035 }{35752648948}
\\\\
\dots$$
a b q r
59482661568307 2814749767109 21 372916459018
2814749767109 372916459018 7 204334553983
372916459018 204334553983 1 168581905035
204334553983 168581905035 1 35752648948
168581905035 35752648948 4 25571309243
35752648948 25571309243 1 10181339705
25571309243 10181339705 2 5208629833
10181339705 5208629833 1 4972709872
5208629833 4972709872 1 235919961
4972709872 235919961 21 18390691
235919961 18390691 12 15231669
18390691 15231669 1 3159022
15231669 3159022 4 2595581
3159022 2595581 1 563441
2595581 563441 4 341817
563441 341817 1 221624
341817 221624 1 120193
221624 120193 1 101431
120193 101431 1 18762
101431 18762 5 7621
18762 7621 2 3520
7621 3520 2 581
3520 581 6 34
581 34 17 3
34 3 11 $$\textcolor[rgb]{1,0,0}{1}$$
3 1 3 0
GCD = 1, so 2814749767109 and 59482661568307 are relatively prime