Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1
4176
8
avatar+270 

OABC is a square. M is the mid-point of OA, and Q divides BC in the ratio 1:3. AP and MQ meet at P.

If O to A = a, O to C = c

express O to P in terms of a and c.

 

I'm bad with vectors...

Somone help me plz...?

physics
 Dec 11, 2014

Best Answer 

 #9
avatar+270 
+10

AC=a+c

MQ=12a+c14a

         =14a+c

OP=OM+MP

        =OA+AP

MP=λ(14a+c)

         =λ4a+λc

AP=μ(a+c)

        =μa+μc

As AP and MP intersect, if I let them equal, I can find the P.

λ4a+λc =μa+μc

Therefore, λ4=μ and λ=μ

Then if I subtitute μ to λ4=μ,

μ4=μ

μ=4

Sub -4 to MP=λ(14a+c)    (As  μ=λ)

MP=4(14a+c)

             =a4c

Finally, 

OP=OM+MP

        =12a+(a4c)

        =12aa4c

        =12a4c

 

.
 Dec 11, 2014
 #1
avatar+118703 
+5

AP and MQ meet at P

I assume that you mean

AC and MQ meet at P  ??

 Dec 11, 2014
 #2
avatar+118703 
0

It is a square - so 

OA=OC

so why have 2 different pronumerals?

 Dec 11, 2014
 #3
avatar+270 
0

Here you are.

 Dec 11, 2014
 #4
avatar+270 
+8

It has different pronumerals, because it's vector.

vector is not only about how long or how big, it's also about the direction of it.

 Dec 11, 2014
 #7
avatar+270 
0

I don't know the answer yet, I'm gonna ask it to my teacher today.

But I think you are on right line.

Anyway, I will post the full answer here today.

Thanks for answering though 

 Dec 11, 2014
 #8
avatar+26397 
+5

OABC is a square. M is the mid-point of OA, and Q divides BC in the ratio 1:3. AC and MQ meet at P.  If O to A = a, O to C = c .  Express O to P in terms of a and c.

1.   If Q=c+34a and M=12a so line ¯MQ is 12a+λ(QM)=12a+λ(c+14a) 

2.   Line ¯AC is a+μ(ca) 

3.

 The intersection of the line ¯MQ with the line ¯AC is $$ the point P=12a+λ(c+14a).$$ We equate: 12a+λ(c+14a)=a+μ(ca) $$ so λ(c+14a)μ(ca)=12a $$ The perpendicular vector of (ca) is (c+a), because we have a square and $$ (ca)(c+a)=0, because the dot-product of vectors $$ perpendicular to each other is a Zero. $$ We multiply our equation with (c+a) and see what passed: 

$\\$\small{\text{  $ \lambda (\vec{c}+\frac{1}{4}\vec{a}) (\vec{c}+\vec{a}) - \mu \underbrace{( \vec{c}-\vec{a}) (\vec{c}+\vec{a})}_{dot-product = 0} = \frac{1}{2}\vec{a} (\vec{c}+\vec{a})  $ }} $\\$\small{\text{  Now we can dissolve after $\lambda$ and receive for $\lambda$: }}  $\\$\small{\text{  $  \lambda = \dfrac{ \frac{1}{2}\vec{a} (\vec{c}+\vec{a}) } {(\vec{c}+\frac{1}{4}\vec{a}) (\vec{c}+\vec{a})  } $ }} $\\$ \boxed{ \small{\text{  $\vec{P} = \frac{1}{2}\vec{a} + \lambda (\vec{c}+\frac{1}{4}\vec{a}) $}} = \lambda \vec{c} + (\frac{1}{2}+\frac{\lambda}{4})\vec{a} $ }}}

 

 Dec 11, 2014
 #9
avatar+270 
+10
Best Answer

AC=a+c

MQ=12a+c14a

         =14a+c

OP=OM+MP

        =OA+AP

MP=λ(14a+c)

         =λ4a+λc

AP=μ(a+c)

        =μa+μc

As AP and MP intersect, if I let them equal, I can find the P.

λ4a+λc =μa+μc

Therefore, λ4=μ and λ=μ

Then if I subtitute μ to λ4=μ,

μ4=μ

μ=4

Sub -4 to MP=λ(14a+c)    (As  μ=λ)

MP=4(14a+c)

             =a4c

Finally, 

OP=OM+MP

        =12a+(a4c)

        =12aa4c

        =12a4c

 

flflvm97 Dec 11, 2014
 #10
avatar+26397 
+8

P.S.λ=12a(c+a)(c+14a)(c+a)=12ac+12a2c2+ca+14ac+14a2=0+12a2a2+0+0+14a2=12a254a2=25

 ac=0a and c are perpendicular and a2=c2 is a square. 

λ=25

OP=25c+35a

Sorry flflvm97 you have a missing term in your equation:

MA+APMP=0MP=MA+APλ(14a+c)=12a+μ(a+c)

.
 Dec 14, 2014

0 Online Users