f(x) = tan^-1(2x+1) f(x)' ?
\tan[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ ] = 2x+1 \quad | \quad \frac{\ d()}{dx} \quad \small{\text{ and }} \quad \boxed{ [ \ tan(x)\ ]' = 1+\tan^2(x) }\\\\ (1+\tan^2(\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ ) ) \times \left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]' = 2 \\\\ \left[ 1+(2x+1)^2} \right] \times \left[\textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]' = 2 \\\\ \boxed{ \left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]' = \frac{2} {1+(2x+1)^2} } }
Thanks for your answer. I really would love some explanation and if you can show me how to solve this problem by using u-substituiton I would appreciate.
Thanks again. :)
y=tan−1(2x+1)Letu=2x+1dudx=2y=tan−1uu=tanydudy=sec2ydydu=1sec2y
--------
y=tan−1(2x+1)Letu=2x+1dudx=2y=tan−1uu=tanydudy=sec2ydydu=1sec2ydydx=dydu×dudx=1sec2y×2=2sec2y=$refertoexplanationbelowtohelpgettonextstep$=21+u2=21+(2x+1)2=24x2+4x+2=12x2+2x+1
--------------------
tan y = u/1
f(x) = tan^-1(2x+1) f(x)' ?
\tan[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ ] = 2x+1 \quad | \quad \frac{\ d()}{dx} \quad \small{\text{ and }} \quad \boxed{ [ \ tan(x)\ ]' = 1+\tan^2(x) }\\\\ (1+\tan^2(\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ ) ) \times \left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]' = 2 \\\\ \left[ 1+(2x+1)^2} \right] \times \left[\textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]' = 2 \\\\ \boxed{ \left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]' = \frac{2} {1+(2x+1)^2} } }