Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1084
4
avatar

f(x) = tan^-1(2x+1)

 Dec 6, 2014

Best Answer 

 #4
avatar+26396 
+10

f(x) = tan^-1(2x+1)      f(x)'  ?

\tan[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ ] = 2x+1 \quad | \quad \frac{\ d()}{dx} \quad \small{\text{ and }} \quad \boxed{ [ \ tan(x)\ ]' = 1+\tan^2(x) }\\\\ (1+\tan^2(\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ ) ) \times \left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'  = 2  \\\\ \left[ 1+(2x+1)^2} \right] \times \left[\textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'  = 2 \\\\ \boxed{ \left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'  = \frac{2} {1+(2x+1)^2} } }

 Dec 8, 2014
 #1
avatar+33654 
+5

Derivative

.

.
 Dec 6, 2014
 #2
avatar
+10

Thanks for your answer. I really would love some explanation and if you can show me how to solve this problem by using u-substituiton I would appreciate.

 

Thanks again. :)

 Dec 6, 2014
 #3
avatar+118703 
+10

y=tan1(2x+1)Letu=2x+1dudx=2y=tan1uu=tanydudy=sec2ydydu=1sec2y

 

--------

 

y=tan1(2x+1)Letu=2x+1dudx=2y=tan1uu=tanydudy=sec2ydydu=1sec2ydydx=dydu×dudx=1sec2y×2=2sec2y=$refertoexplanationbelowtohelpgettonextstep$=21+u2=21+(2x+1)2=24x2+4x+2=12x2+2x+1

 

--------------------

 tan y = u/1

 Dec 7, 2014
 #4
avatar+26396 
+10
Best Answer

f(x) = tan^-1(2x+1)      f(x)'  ?

\tan[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ ] = 2x+1 \quad | \quad \frac{\ d()}{dx} \quad \small{\text{ and }} \quad \boxed{ [ \ tan(x)\ ]' = 1+\tan^2(x) }\\\\ (1+\tan^2(\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ ) ) \times \left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'  = 2  \\\\ \left[ 1+(2x+1)^2} \right] \times \left[\textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'  = 2 \\\\ \boxed{ \left[\ \textcolor[rgb]{1,0,0}{\tan^{-1}(2x+1)} \ \right]'  = \frac{2} {1+(2x+1)^2} } }

heureka Dec 8, 2014

2 Online Users

avatar