Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26396 
+10

Find t if the expansion of the product of x^3 - 4x^2 + 2x - 5 and x^2 + tx - 7 has no x^2 term.

 (x34x2+2x5)(x2+tx7)=tx44tx3+2tx25tx+x54x45x3+23x214x+35 

 Set 2tx2+23x2=0 than the product has no x2, t must be a constant! 2tx2+23x2=02tx2=23x2|:2x2t=232=11.5

 t=11.5(x34x2+2x5)(x2+(11.5)x7)=x515.5x4+41x3+43.5x+35 

There is no more x2

.
04.12.2014
 #1
avatar+26396 
+10

----------------------------------------------------------

The polynomial f(x) has degree 3. If f(-1) = 15f(0)= 0f(1) = -5, and f(2) = 12, then what are the x-intercepts of the graph of f(x)?

The polynomial f(x) of degree 3 is f(x)=ax3+bx2+cx+d

I.  We need a, b, c and d :

 \begin{array}{r|r|lrclrclccl} \hline x & y & &f(x)& =& ax^3+bx^2+cx+d & && &\textcolor[rgb]{1,0,0}{d}&\textcolor[rgb]{1,0,0}{=}&\textcolor[rgb]{1,0,0}{0} \ \hline -1 & 15& (1) & 15 &=& a(-1)^3+b(-1)^2+c(-1) +d & 15&=& -a+b-c+d & 15&=&-a+b-c\ 0 & 0 & (2) & 0 &=& a(0)^3+b(0)^2+c(0) +d & \textcolor[rgb]{1,0,0}{0} &\textcolor[rgb]{1,0,0}{=}& \textcolor[rgb]{1,0,0}{d} & -5&=&a+b+c\ 1 & -5 & (3) & -5 &=& a(1)^3+b(1)^2+c(1) +d & -5 &=& a+b+c+d & \ 2 & 12 & (4) & 12 &=& a(2)^3+b(2)^2+c(2) +d & 12 &=& 8a+4b+2c+d & 12 &=& 8a+4b+2c\ \hline \end{array} 

d=0:

(1) -a + b - c = 15

(2)  a + b + c = -5

(4) 8a+4b+2c = 12 | :2       (4) 4a + 2b + c = 6

----------------------------------------------------------

(1)+(2): 2b = 10    b=5

----------------------------------------------------------

b=5:

(1)   a + c = -10

(2)   a + c = -10

(4) 4a + c =  -4

----------------------------------------------------------

(4)-(2): 3a = -4 -(-10) = 6    3a = -4+10    3a = 6   =>  a=2 

(1)  2 + c = -10    c=12

The polynomial f(x) of degree 3 is f(x)=2x3+5x212x+0

 

II.  x-intercepts of the graph of f(x)?

 

2x3+5x212x=0x=0(2x2+5x12)=0=0x1=02x2+5x12=0|ax2+bx+c=0=>x=b±b24ac2ax2,3=5±2542(12)4x2,3=5±1214x2,3=5±\114x2=5+114=64=1.5x2=1.5x3=5114=164=4x3=4

The x-intercepts are: -4, 0 and 1.5

04.12.2014
 #3
avatar+26396 
+10

3 points lie on the same line, if the area of the triangle from 3 points is 0:

P1=(x1,y1)P2=(x2,y2)P3=(x3,y3) The area of a triangle with 3 Points is the determinant =|(x1x2)(x3x2)(y1y2)(y3y2)| area =(x1x2)(y3y2)(y1y2)(x3x2)

I

do theese 3 points lie on the same lines?

(-4,-2) (2,2.5) (8,7)

\\P_1(x_1 = -4,\ y_1 = -2 ) \\  P_2(x_2 = 2,\ y_2 = 2.5 ) \\  P_3(x_3 = 8,\ y_3 = 7 ) \\  \text{ area } = (x_1-x_2) *(y_3-y_2) - (y_1-y_2)*(x_3-x_2)} \\  \text{ area } = (-4-2) *(7-2.5) - ( (-2)-2.5)*(8-2)} \\  \text{ area } = (-6) *(4.5) - ( -4.5)*(6)} \\  \text{ area } = (-27) - ( -27)} \\  \text{ area } = -27 + 27 = 0 }

area = 0: The 3 Points lie on the same line.

II

do theese 3 points lie on the same lines?

(-10,4) (-3,2.8) (-17,6.8)

\\P_1(x_1 = -10,\ y_1 = 4 ) \\  P_2(x_2 = -3,\ y_2 = 2.8 ) \\  P_3(x_3 = -17,\ y_3 = 6.8 ) \\  \text{ area } = (x_1-x_2) *(y_3-y_2) - (y_1-y_2)*(x_3-x_2)} \\  \text{ area } = (-10-(-3)) *(6.8-2.8) - ( 4-2.8)*(-17-(-3))} \\  \text{ area } = (-10+3) *(4) - ( 1.2)*(-17+3)} \\  \text{ area } = (-7) *(4) - ( 1.2)*(-14)} \\  \text{ area } = (-28) - ( -16.8 )} \\  \text{ area } = -28 + 16.8 = - 11.2 \ne 0 }

The area is not 0. The 3 Points lie not on the same line.

03.12.2014