Processing math: 100%
 
+0  
 
0
817
5
avatar

What is the remainder of: 13^1031 mod 599 =? Thanks for help.

 Feb 14, 2017

Best Answer 

 #2
avatar+26396 
+15

What is the remainder of: 13^1031 mod 599 =?

 

131031(mod599)132515+1(mod599)(132)51513(mod599)|132(mod599)=16916951513(mod599)1692257+113(mod599)(1692)25716913(mod599)|1692(mod599)=40840825716913(mod599)4082128+116913(mod599)(4082)12840816913(mod599)|4082(mod599)=54154112840816913(mod599)(5412)6440816913(mod599)|5412(mod599)=3693696440816913(mod599)(3692)3240816913(mod599)|3692(mod599)=1881883240816913(mod599)(1882)1640816913(mod599)|1882(mod599)=331640816913(mod599)|316=43046721(mod599)=18518540816913(mod599)165829560(mod599)4(mod599)4

 

laugh

 Feb 14, 2017
 #1
avatar+12530 
+5

What is the remainder of: 13^1031 mod 599 =? Thanks for help.

 

 Feb 14, 2017
 #2
avatar+26396 
+15
Best Answer

What is the remainder of: 13^1031 mod 599 =?

 

131031(mod599)132515+1(mod599)(132)51513(mod599)|132(mod599)=16916951513(mod599)1692257+113(mod599)(1692)25716913(mod599)|1692(mod599)=40840825716913(mod599)4082128+116913(mod599)(4082)12840816913(mod599)|4082(mod599)=54154112840816913(mod599)(5412)6440816913(mod599)|5412(mod599)=3693696440816913(mod599)(3692)3240816913(mod599)|3692(mod599)=1881883240816913(mod599)(1882)1640816913(mod599)|1882(mod599)=331640816913(mod599)|316=43046721(mod599)=18518540816913(mod599)165829560(mod599)4(mod599)4

 

laugh

heureka Feb 14, 2017
 #3
avatar+118702 
0

Mmm 

I do not know the best way to do this but I will give it a go

 

13^1031 mod 599

 

13^1=13          = 13 mod 599

13^2=169        =  169 mod 599

13^3 = 2197     = 400 mod 599

13^4=28561    = 408 mod 588

13^5                = 512 mod 599

13^6                = 67 mod 599

13^7                = 272 mod 599

 

13^1031= 13^(6*171)*13^5

 

13^1031= ((67mod599)^171)*512mod599

 

13^1031= ((67mod599)^5)^34*(67mod599)*512mod599

 

13^1031= (72mod599)^34*(67*512mod599)

 

13^1031= (72mod599)^34*(161mod599)

 

13^1031= ((72mod599)^4)^8*(72mod599)^2*(161mod599)

 

13^1031= (320mod599)^8*(392mod599)*(161mod599)

 

13^1031= (320mod599)^3*(392mod599)^3*(320mod599)^2*(392mod599)*(161mod599)

 

13^1031= (304mod599)*(304mod599)*(570mod599)*(392*161mod599)

 

13^1031= ((304*304)mod599)   * (570mod599)*(217mod599)

 

13^1031= (170)mod599   *  (570*217)mod599

 

13^1031= (170)mod599   *  (296)mod599

 

13^1031= (170*296)mod599

 

13^1031   =     4   mod 599      laugh

 

 

 

the answer is 4

Verification:

http://ptrow.com/perl/calculator.pl

 Feb 14, 2017
 #4
avatar
0

The EASY way of doing it!!!!!:

 

[13^1031] / 599 =0.0066777963 2721202003 3388981636 0601001669 4490818030.....[Fractional part x 599] =4 !!.

 Feb 14, 2017
 #5
avatar+26396 
+10

What is the remainder of: 13^1031 mod 599 =? Thanks for help.

 

Fermat's little theorem states that if p is a prime number, then for any integer a,

apa(modp)

 

If a is not divisible by p, Fermat's little theorem is equivalent

ap11(modp)

 

see: https://en.wikipedia.org/wiki/Fermat%27s_little_theorem

 

Let p = 599 (prime number)

Let a = 13 (prime number)

gcd(13,599) = 1 ! so 13 and 599 are relatively prime, we can use Fermat's little theorem.

 

ap11(modp)1359911(mod599)135981(mod599)

 

131031(mod599)13598+433(mod599)1359813433(mod599)|13598(mod599)=1113433(mod599)13433(mod599)13854+1(mod599)(138)5413(mod599)|138(mod599)=5415415413(mod599)54131813(mod599)(5413)1813(mod599)|5413(mod599)=1621621813(mod599)1623613(mod599)(1623)613(mod599)|1623(mod599)=425425613(mod599)4253213(mod599)(4253)213(mod599)|4253(mod599)=181181213(mod599)425893(mod599)4(mod599)

 

laugh

 Feb 15, 2017
edited by heureka  Feb 15, 2017

1 Online Users

avatar