I doubt you will read this, but I'm actually from New Zealand and I'm in Auckland.
Hi Eight MersenePrime,
I was thinking about your username... I looked up meridians to see where you might come from.
I am thinking that maybe you are from Strasbourg in France.... :)
I had not realized before that Bamako is further west than london - quite a lot further west !!
I love looking at maps :))
Now to answer your question :)
cos(19\pi/12)
cos(19π12)4th quadrant=+cos((24−19)π12)=+cos(5π12)=+cos(3π12+2π12)=cos(π4+π6)=cos(π4)cos(π6)−sin(π4)sin(π6)=cos(45∘)cos(30∘)−sin(45∘)sin(30∘)=1√2×√32−1√2×12=√3−12√2=√3−12√2×√2√2=√6−√22∗2=√6−√24
I doubt you will read this, but I'm actually from New Zealand and I'm in Auckland.
Random math IV
1.
cos(1912π)=cos(285∘)=cos(285∘−360∘)=cos(−75∘)=cos(15∘−90∘)=cos(−(90∘−15∘))=cos(90∘−15∘)=sin(15∘)cos(1912π)=sin(15∘)
2.
(1)cos(45∘−15∘)=cos(30∘)=cos(45∘)⋅cos(15∘)+sin(45∘)⋅sin(15∘)(2)cos(45∘+15∘)=cos(60∘)=cos(45∘)⋅cos(15∘)−sin(45∘)⋅sin(15∘)(1)−(2):cos(30∘)−cos(60∘)=2⋅sin(45∘)⋅sin(15∘)cos(30∘)=√32cos(60∘)=12sin(45∘)=√22√32−12=2⋅√22⋅sin(15∘)√3−12=√2⋅sin(15∘)√3−12⋅√2⋅√2√2=sin(15∘)√2√3−√24=sin(15∘)√6−√24=sin(15∘)cos(1912π)=sin(15∘)=√6−√24