The region bounded by y = 5 and y = x+(4/x) is rotated about the line x=−1.
Find the volume of the resulting solid by any method.
Shell method:
f(x)=x+4xg(x)=5
Rotation around Vertical line: xaxis of rotation=−1
Radius of Rotation: r=x−xaxis of rotation=x−(−1)=x+1
Circumference of the cylinder =2πr
Shell Volume =2πr⋅[g(x)−f(x)] dx
Limits of integration:
f(x)=g(x)x+4x=5|⋅xx2+4=5x|−5xx2−5x+4=0(x−1)(x−4)=0a=1andb=4
Volume:
V=b∫a2πr⋅[g(x)−f(x)] dx=2π⋅b∫ar⋅[g(x)−f(x)] dx
V=2π⋅4∫1(x+1)⋅[5−(x+4x)] dx=2π⋅4∫1[x⋅(5−x−4x)+5−x−4x] dx=2π⋅4∫1(5x−x2−4+5−x−4x) dx=2π⋅4∫1(4x−x2+1−4x) dx=2π⋅[ 2x2−x33+x−4⋅ln(x) ]41=2π⋅[ 2⋅(4)2−(4)33+(4)−4⋅ln(4)−(2⋅(1)2−(1)33+(1)−4⋅ln(1))]=2π⋅[32−643+4−4⋅ln(4)−(2−13+1+0)]=2π⋅[32−643+4−4⋅ln(4)−2+13−1]=2π⋅[33−633−4⋅ln(4)]=2π⋅[33−21−4⋅ln(22)]=2π⋅[12−4⋅2⋅ln(2)]=2π⋅[12−8⋅ln(2)]=2π⋅6.45482255552=40.5568462413
The volume of the resulting solid is 40.5568462413
