sinx-2sinxcosx=0
  
 Formula:
 \(\begin{array}{|rcll|} \hline 2\ sin(x) \cos(x) &=& \sin(2x)\\ \hline \end{array}\)
  
  
 So:
 \(\begin{array}{|rcll|} \hline 0 &=& \sin(x) - 2\cdot sin(x) \cos(x) \quad & | \quad 2\cdot sin(x) \cos(x) = \sin(2x) \\ 0 &=& \sin(x) - \sin(2x) \quad & | \quad + \sin(2x) \\ \sin(2x) &=& \sin(x) \\ \hline \end{array} \)
  
 First result:
 \(\begin{array}{|rcll|} \hline \sin(2x) &=& \sin(x) \quad & | \quad \arcsin() \text{ both sides } \\ 2x &=& x \quad & | \quad -x \\ 2x-x &=& 0 \\ \mathbf{ x } & \mathbf{=} & \mathbf{ 0 \pm 360^{\circ} \cdot n } \quad & | \quad n \in N \\ \hline \end{array}\)
  
 Second result:
 \(\begin{array}{|rcll|} \hline \sin(2x) &=& \sin(x) \quad & | \quad \sin(x) = \sin(180^{\circ}-x) \\ \sin(2x) &=& \sin(180^{\circ}-x) \quad & | \quad \arcsin() \text{ both sides } \\ 2x &=& 180^{\circ}-x \quad & | \quad +x \\ 2x+x &=& 180^{\circ} \\ 3x &=& 180^{\circ} \quad & | \quad : 3 \\ x &=& 60^{\circ} \\ \mathbf{ x } & \mathbf{=} & \mathbf{ 60^{\circ} \pm 360^{\circ} \cdot n } \quad & | \quad n \in N \\ \hline \end{array}\)
  
 Third result:
 \(\begin{array}{|rcll|} \hline \sin(2x) &=& \sin(x) \quad & | \quad -\sin(x) = \sin(180^{\circ}+x) \\ \sin(2x) &=& -\sin(180^{\circ}+x) \\ \sin(2x) &=& \sin(-180^{\circ}-x) \quad & | \quad \arcsin() \text{ both sides } \\ 2x &=& -180^{\circ}-x \quad & | \quad +x \\ 2x+x &=& -180^{\circ} \\ 3x &=& -180^{\circ} \quad & | \quad : 3 \\ x &=& -60^{\circ} \\ \mathbf{ x } & \mathbf{=} & \mathbf{ -60^{\circ} \pm 360^{\circ} \cdot n } \quad & | \quad n \in N \\ \hline \end{array} \)
  
  
 