heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #8
avatar+26387 
0

Hi ! I have to show that
\(\sum \limits_{n=2}^{\infty} \left( \dfrac { \ln \left[(1+ \frac {1} {n})^n\cdot (n+1) \right]} { \ln(n^n)\cdot \ln \left[(n+1)^{n+1} \right]} \right)= \dfrac {1} {2\cdot \ln(2)}\)
Can anyone help ? Thank you in advance.

 

\(\begin{array}{|rcll|} \hline && \sum \limits_{n=2}^{\infty} \dfrac { \ln \left[(1+ \frac {1} {n})^n\cdot (n+1) \right]} { \ln(n^n)\cdot \ln \left[(n+1)^{n+1} \right]} \\\\ &=&\sum \limits_{n=2}^{\infty} \dfrac { \ln \left[(\frac {n+1} {n})^n\cdot (n+1) \right]} { \ln(n^n)\cdot \ln \left[(n+1)^{n+1} \right]} \\\\ &=&\sum \limits_{n=2}^{\infty} \dfrac { \ln \left[ \frac {(n+1)^n} {n^n}\cdot (n+1) \right]} { \ln(n^n)\cdot \ln \left[(n+1)^{n+1} \right]} \\\\ &=&\sum \limits_{n=2}^{\infty} \dfrac { \ln [ \frac {(n+1)^{n+1}} {n^n} ]} { \ln(n^n)\cdot \ln \left[(n+1)^{n+1} \right]} \\\\ &=&\sum \limits_{n=2}^{\infty} \dfrac { \ln \left[(n+1)^{n+1} \right]- \ln(n^n) } { \ln(n^n)\cdot \ln \left[(n+1)^{n+1} \right] } \\\\ &=&\sum \limits_{n=2}^{\infty} \left( \dfrac { \ln \left[(n+1)^{n+1} \right] } { \ln(n^n)\cdot \ln \left[(n+1)^{n+1} \right] } - \dfrac { \ln(n^n) } { \ln(n^n)\cdot \ln \left[(n+1)^{n+1} \right] } \right) \\\\ &=&\sum \limits_{n=2}^{\infty} \left( \dfrac { 1 } { \ln(n^n) } - \dfrac { 1 } { \ln \left[(n+1)^{n+1} \right] } \right) \\\\ &=&\sum \limits_{n=2}^{\infty} \dfrac { 1 } { \ln(n^n) } -\sum \limits_{n=2}^{\infty} \dfrac { 1 } { \ln \left[(n+1)^{n+1} \right] } \\\\ &=&\sum \limits_{n=1}^{\infty} \dfrac { 1 } { \ln[(n+1)^{n+1}] } -\sum \limits_{n=2}^{\infty} \dfrac { 1 } { \ln \left[(n+1)^{n+1} \right] } \\\\ &=& \dfrac{1}{\ln(2^2)} + \sum \limits_{n=2}^{\infty} \dfrac { 1 } { \ln[(n+1)^{n+1}] } -\sum \limits_{n=2}^{\infty} \dfrac { 1 } { \ln \left[(n+1)^{n+1} \right] } \\\\ &=& \dfrac{1}{\ln(2^2)} \\\\ &=& \dfrac{1}{2\cdot \ln(2)} \\ \hline \end{array}\)

 

laugh

06.02.2017
 #3
avatar+26387 
+5

sinx-2sinxcosx=0

 

Formula:

\(\begin{array}{|rcll|} \hline 2\ sin(x) \cos(x) &=& \sin(2x)\\ \hline \end{array}\)

 

 

So:

\(\begin{array}{|rcll|} \hline 0 &=& \sin(x) - 2\cdot sin(x) \cos(x) \quad & | \quad 2\cdot sin(x) \cos(x) = \sin(2x) \\ 0 &=& \sin(x) - \sin(2x) \quad & | \quad + \sin(2x) \\ \sin(2x) &=& \sin(x) \\ \hline \end{array} \)

 

First result:

\(\begin{array}{|rcll|} \hline \sin(2x) &=& \sin(x) \quad & | \quad \arcsin() \text{ both sides } \\ 2x &=& x \quad & | \quad -x \\ 2x-x &=& 0 \\ \mathbf{ x } & \mathbf{=} & \mathbf{ 0 \pm 360^{\circ} \cdot n } \quad & | \quad n \in N \\ \hline \end{array}\)

 

Second result:

\(\begin{array}{|rcll|} \hline \sin(2x) &=& \sin(x) \quad & | \quad \sin(x) = \sin(180^{\circ}-x) \\ \sin(2x) &=& \sin(180^{\circ}-x) \quad & | \quad \arcsin() \text{ both sides } \\ 2x &=& 180^{\circ}-x \quad & | \quad +x \\ 2x+x &=& 180^{\circ} \\ 3x &=& 180^{\circ} \quad & | \quad : 3 \\ x &=& 60^{\circ} \\ \mathbf{ x } & \mathbf{=} & \mathbf{ 60^{\circ} \pm 360^{\circ} \cdot n } \quad & | \quad n \in N \\ \hline \end{array}\)

 

Third result:

\(\begin{array}{|rcll|} \hline \sin(2x) &=& \sin(x) \quad & | \quad -\sin(x) = \sin(180^{\circ}+x) \\ \sin(2x) &=& -\sin(180^{\circ}+x) \\ \sin(2x) &=& \sin(-180^{\circ}-x) \quad & | \quad \arcsin() \text{ both sides } \\ 2x &=& -180^{\circ}-x \quad & | \quad +x \\ 2x+x &=& -180^{\circ} \\ 3x &=& -180^{\circ} \quad & | \quad : 3 \\ x &=& -60^{\circ} \\ \mathbf{ x } & \mathbf{=} & \mathbf{ -60^{\circ} \pm 360^{\circ} \cdot n } \quad & | \quad n \in N \\ \hline \end{array} \)

 

 

laugh

06.02.2017