Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1407
3
avatar+25 

 

Find the sum of 35 terms of an arithmetic series of which the first term is a and the fifteenth term is 9a.

 Feb 7, 2017
 #1
avatar+118719 
0

Find the sum of 35 terms of an arithmetic series of which the first term is a and the fifteenth term is 9a.

 

t1=35t15=9atn=t1+(n1)dt15=t1+(151)d=9aa+14d=9a14d=8a7d=4ad=4a7Sn=n2(2a+(n1)d)S35=352(2a+(34)4a7)S35=351(1a+174a7)S35=35(a+68a7)S35=35a+568aS35=35a+340aS35=375a

 Feb 7, 2017
 #2
avatar
0

(F + L] / 2 x N =, where F=1a, L=9a, N=15

[1 + 9] / 2 x 15 =75a

 

75 =15/2[2*1 + (15 - 1)*D], solve for D

D=4/7

Sum(35) =35/2[2*1 + (35 - 1)*4/7]

Sum(35) =17.5 * (21 3/7)

Sum(35) =375a

 Feb 8, 2017
 #3
avatar+26399 
0

Find the sum of 35 terms of an arithmetic series
of which the first term is a and the fifteenth term is 9a.

 

Let t1 = a

Let t15 = 9a

 

Formula:

(1)tx=t1+(x1)d(2)ty=t1+(y1)d(3)tz=t1+(z1)dI=(1)(2)txty=d(xy)II=(1)(3)txtz=d(xz)II/Itxtztxty=d(xz)d(xy)txtztxty=xzxy|(txty)txtz=(txty)xzxytz=tx(txty)xzxytz=txtx(xzxy)+ty(xzxy)tz=tx(1xzxy)+ty(xzxy)tz=tx(xyx+zxy)+ty(xzxy)tz=tx(zyxy)+ty(xzxy)

 

t35 = ?

x=1tx=t1=ay=15ty=t15=9az=35tz=t35= ?tz=tx(zyxy)+ty(xzxy)t35=a(3515115)+9a(135115)t35=a(2014)+9a(3414)t35=a(107)+9a(177)t35=9a(177)a(107)t35=a(9177)a(107)t35=a(1537)a(107)t35=a(153107)t35=1437a

 

s35 = ?

s35=(t1+t352)35|t1=at35=1437as35=(a+1437a2)35s35=(1+14372)35as35=(15014)35as35=15052as35=755as35=375a

 

 

laugh

 Feb 8, 2017

0 Online Users