Find the sum of 35 terms of an arithmetic series of which the first term is a and the fifteenth term is 9a.
Find the sum of 35 terms of an arithmetic series of which the first term is a and the fifteenth term is 9a.
t1=35t15=9atn=t1+(n−1)dt15=t1+(15−1)d=9aa+14d=9a14d=8a7d=4ad=4a7Sn=n2(2a+(n−1)d)S35=352(2a+(34)4a7)S35=351(1a+17∗4a7)S35=35(a+68a7)S35=35a+5∗68aS35=35a+340aS35=375a
(F + L] / 2 x N =, where F=1a, L=9a, N=15
[1 + 9] / 2 x 15 =75a
75 =15/2[2*1 + (15 - 1)*D], solve for D
D=4/7
Sum(35) =35/2[2*1 + (35 - 1)*4/7]
Sum(35) =17.5 * (21 3/7)
Sum(35) =375a
Find the sum of 35 terms of an arithmetic series
of which the first term is a and the fifteenth term is 9a.
Let t1 = a
Let t15 = 9a
Formula:
(1)tx=t1+(x−1)⋅d(2)ty=t1+(y−1)⋅d(3)tz=t1+(z−1)⋅dI=(1)−(2)tx−ty=d⋅(x−y)II=(1)−(3)tx−tz=d⋅(x−z)II/Itx−tztx−ty=d⋅(x−z)d⋅(x−y)tx−tztx−ty=x−zx−y|⋅(tx−ty)tx−tz=(tx−ty)⋅x−zx−ytz=tx−(tx−ty)⋅x−zx−ytz=tx−tx⋅(x−zx−y)+ty⋅(x−zx−y)tz=tx⋅(1−x−zx−y)+ty⋅(x−zx−y)tz=tx⋅(x−y−x+zx−y)+ty⋅(x−zx−y)tz=tx⋅(z−yx−y)+ty⋅(x−zx−y)
t35 = ?
x=1tx=t1=ay=15ty=t15=9az=35tz=t35= ?tz=tx⋅(z−yx−y)+ty⋅(x−zx−y)t35=a⋅(35−151−15)+9a⋅(1−351−15)t35=a⋅(20−14)+9a⋅(−34−14)t35=−a⋅(107)+9a⋅(177)t35=9a⋅(177)−a⋅(107)t35=a⋅(9⋅177)−a⋅(107)t35=a⋅(1537)−a⋅(107)t35=a⋅(153−107)t35=1437a
s35 = ?
s35=(t1+t352)⋅35|t1=at35=1437as35=(a+1437a2)⋅35s35=(1+14372)⋅35as35=(15014)⋅35as35=150⋅52as35=75⋅5as35=375a