I am a number less than 3000. If you divide me by 32 you will get a remainder 30. If you divide me by 54 , you will get a remainder 44. What number am I?
I am a number less than 3000.
If you divide me by 32 you will get a remainder 30.
If you divide me by 54 , you will get a remainder 44.
What number am I?
I am 638 or 1502 or 2366
n≡30(mod32)n≡44(mod54)or n−30=32rn−44=54s
Because 32r or 54s is even
so n-30 or n-44 is even so n is even
We can set: m=n2 and m is an integer.
n−30=32r|:2n2−15=16rm−15=16rn−44=54s|:2n2−22=27sm−22=27sor m≡15(mod16)m≡22(mod27) with n=2m and 16⋅27=432
Because 16 and 27 are relatively prim ( gcd(16,27) = 1! ) we can go on:
m=15⋅27⋅[127(mod16)]+22⋅16⋅[116(mod27)]
[127(mod16)]=27φ(16)−1(mod16)=278−1mod16=277mod16=3[116(mod27)]=16φ(27)−1(mod27)=1618−1mod27=1617mod27=22
m=15⋅27⋅3+22⋅16⋅22m=8959+k⋅432|k∈Zn=2mn=2⋅(8959+k⋅432)n=17918+k⋅864nmin=17918(mod864)nmin=638n=638+k⋅864|k∈Z
k=0:n=638k=1:n=638+1⋅864n=1502k=2:n=638+2⋅864n=2366
solve n mod 32 = 30
n mod 54 = 44 for n
n = 864C + 638 =1,502 when C=1
n = 864C + 638 =2,366 when C=2
Both of these solutions are valid.
I am a number less than 3000.
If you divide me by 32 you will get a remainder 30.
If you divide me by 54 , you will get a remainder 44.
What number am I?
I am 638 or 1502 or 2366
n≡30(mod32)n≡44(mod54)or n−30=32rn−44=54s
Because 32r or 54s is even
so n-30 or n-44 is even so n is even
We can set: m=n2 and m is an integer.
n−30=32r|:2n2−15=16rm−15=16rn−44=54s|:2n2−22=27sm−22=27sor m≡15(mod16)m≡22(mod27) with n=2m and 16⋅27=432
Because 16 and 27 are relatively prim ( gcd(16,27) = 1! ) we can go on:
m=15⋅27⋅[127(mod16)]+22⋅16⋅[116(mod27)]
[127(mod16)]=27φ(16)−1(mod16)=278−1mod16=277mod16=3[116(mod27)]=16φ(27)−1(mod27)=1618−1mod27=1617mod27=22
m=15⋅27⋅3+22⋅16⋅22m=8959+k⋅432|k∈Zn=2mn=2⋅(8959+k⋅432)n=17918+k⋅864nmin=17918(mod864)nmin=638n=638+k⋅864|k∈Z
k=0:n=638k=1:n=638+1⋅864n=1502k=2:n=638+2⋅864n=2366
n mod 54 = 44
n mod 32 = 30, Solve for n
LCM 32, 54 = 864
54S + 44 = 32T + 30, solve for S, T
S = 11, T = 19
54 x 11 + 44 =638, Therefore:
n = 864C + 638. For C=0, 1, 2........etc
n =638, 1,502, 2,366......etc.
I used excel to calculate
the answers are 798, 1726 and 2654
Basically your child should do what excel does:
1) Write column A of numbers 1,2,3,4 ... 100
2) Write column B with calculation result of "column A number * 32 + 30" =
3) Write column C with calculation result of "column A number * 58 + 44" =
4) Then go over the results and find numbers that are the same in column B and C