Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
3349
5
avatar

I am a number less than 3000. If you divide me by 32 you will get a remainder 30. If you divide me by 54 , you will get a remainder 44. What number am I?cheeky

 Feb 8, 2017

Best Answer 

 #2
avatar+26396 
+15

I am a number less than 3000.

If you divide me by 32 you will get a remainder 30.

If you divide me by 54 , you will get a remainder 44.

What number am I?

 

I am 638 or 1502 or 2366

 

n30(mod32)n44(mod54)or n30=32rn44=54s

 

Because 32r or 54s is even
so n-30 or n-44 is even so n is even


We can set: m=n2 and m is an integer.

 

n30=32r|:2n215=16rm15=16rn44=54s|:2n222=27sm22=27sor m15(mod16)m22(mod27) with n=2m and 1627=432

 

Because 16 and 27 are relatively prim ( gcd(16,27) = 1! ) we can go on:

m=1527[127(mod16)]+2216[116(mod27)]

 

[127(mod16)]=27φ(16)1(mod16)=2781mod16=277mod16=3[116(mod27)]=16φ(27)1(mod27)=16181mod27=1617mod27=22

 

m=15273+221622m=8959+k432|kZn=2mn=2(8959+k432)n=17918+k864nmin=17918(mod864)nmin=638n=638+k864|kZ

 

k=0:n=638k=1:n=638+1864n=1502k=2:n=638+2864n=2366

 

laugh

 Feb 9, 2017
 #1
avatar
+5

solve n mod 32 = 30
n mod 54 = 44 for n

 

n = 864C + 638 =1,502 when C=1

n = 864C + 638 =2,366 when C=2 

Both of these solutions are valid.

 Feb 8, 2017
 #2
avatar+26396 
+15
Best Answer

I am a number less than 3000.

If you divide me by 32 you will get a remainder 30.

If you divide me by 54 , you will get a remainder 44.

What number am I?

 

I am 638 or 1502 or 2366

 

n30(mod32)n44(mod54)or n30=32rn44=54s

 

Because 32r or 54s is even
so n-30 or n-44 is even so n is even


We can set: m=n2 and m is an integer.

 

n30=32r|:2n215=16rm15=16rn44=54s|:2n222=27sm22=27sor m15(mod16)m22(mod27) with n=2m and 1627=432

 

Because 16 and 27 are relatively prim ( gcd(16,27) = 1! ) we can go on:

m=1527[127(mod16)]+2216[116(mod27)]

 

[127(mod16)]=27φ(16)1(mod16)=2781mod16=277mod16=3[116(mod27)]=16φ(27)1(mod27)=16181mod27=1617mod27=22

 

m=15273+221622m=8959+k432|kZn=2mn=2(8959+k432)n=17918+k864nmin=17918(mod864)nmin=638n=638+k864|kZ

 

k=0:n=638k=1:n=638+1864n=1502k=2:n=638+2864n=2366

 

laugh

heureka Feb 9, 2017
 #3
avatar
+4

n mod 54 = 44

n mod 32 = 30, Solve for n

 

LCM 32, 54 = 864

54S + 44 = 32T + 30, solve for S, T

S = 11, T = 19

54 x 11 + 44 =638, Therefore:

n = 864C + 638. For C=0, 1, 2........etc

n =638, 1,502, 2,366......etc.

 Feb 10, 2017
 #4
avatar
+4

I used excel to calculate

the answers are 798, 1726 and 2654

 

Basically your child should do what excel does:

1) Write column A of numbers 1,2,3,4 ... 100
2) Write column B with calculation result of "column A number * 32 + 30" =

3) Write column C with calculation result of "column A number * 58 + 44" =

4) Then go over the results and find numbers that are the same in column B and C

 Mar 8, 2017
 #5
avatar+26396 
+5

Hello Guest,

 

your answer is not correct.

if n =   798, then 798(mod54) is not 44. It is 42.

if n = 1726, then 1726(mod54) is not 44. It is 52.

if n = 2654, then 2654(mod54) is not 44. It is 8.

 

laugh

heureka  Mar 8, 2017

2 Online Users

avatar