Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #9
avatar+26396 
+5

Solve the following differential equation:
y'' + y = 0,

y(0)=2,

y'(0)=1.

 

y(x)+y(x)=0y(x)=y(x)

 

We search a function which arises twice derived again, but with a negative algebraic sign.

There occurs very fast sin (x) or cos (x).

 

Example 1:

y(x)=c1sin(x)y(x)=c1cos(x)y(x)=c1sin(x)y(x)=y(x)

 

Example 2:

y(x)=c2cos(x)y(x)=c2sin(x)y(x)=c2cos(x)y(x)=y(x)

 

The solution exists of a functional family and becomes unequivocal by initial conditions.

yfamily(x)=c1sin(x)+c2cos(x)y(x)=c1cos(x)c2sin(x)y(x)=c1sin(x)c2cos(x)=(c1sin(x)+c2cos(x))=y(x) 

 

computation of c1 and c2

y(x)=c1sin(x)+c2cos(x)|y(0)=22=c1sin(0)+c2cos(0)2=0+c21c2=2y(x)=c1cos(x)c2sin(x)|y(0)=11=c1cos(0)c2sin(0)1=c110c1=1

 

The function y(x):


y(x)=c1sin(x)+c2cos(x)|c1=1c2=2y(x)=1sin(x)+2cos(x)y(x)=sin(x)+2cos(x)

 

laugh

13.12.2016
 #4
avatar+26396 
+5

Hello, i have this problem
(12)+(12i)12i
, how would i go at simplifying this.

 

(12)+(12i)12i=1212i+12i12i=1212i+1=(12)(12i)(1+2i)(1+2i)+1=1(1+2i)2(1+2i)(12i)(1+2i)+1=1+2i222i(12i)(1+2i)+1=12+2i2i(12i)(1+2i)+1=12+(22)i(12i)(1+2i)+1=12+(22)i[12(2i)2]+1=12+(22)i12i2+1|i2=1=12+(22)i12(1)+1=12+(22)i1+2+1=12+(22)i3+1=12+(22)i3+33=42+(22)i3=42+(22)i3=423+(22)3i=0.861928812542301650399437...0.195262145875634983732770...i

 

laugh

12.12.2016
 #1
avatar+26396 
0

The graph of a transformed exponential function has the following characteristics:

horizontal asymptote at y = -9 passes through the points (-4, -8) and (-1, 18)

What are the coordinates of the x-intercept?

 

Formula:

Transformed Exponential Function in the Form y=bxh+k
h = Horizontal Shift
k = Vertical Shift

 

Horizontal asymptote at y=9, so k=9

Point 1  (4,8):y=bxh98=b4h91=b4h|ln() both sidesln(1)=ln(b4h)ln(1)=(4h)ln(b)|ln(1)=00=(4h)ln(b)|:ln(b)0=4h|+hh=4Point 2  (1,18):y=bxh918=b1h927=b1h|h=427=b1+427=b3|27=3333=b3|3 both sides3=bb=3

 

The Transformed Exponential Function is  y=3x+49

 

The coordinates of the x-intercept:

y=3x+49|y=00=3x+49|+99=3x+4|9=3232=3x+42=x+4|424=x2=xx=2

 

The coordinates of the x-intercept is (-2,0)

 

The graph is:

 

laugh

12.12.2016