heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #9
avatar+26387 
+5

Solve the following differential equation:
y'' + y = 0,

y(0)=2,

y'(0)=1.

 

\(\begin{array}{|rcll|} \hline y(x)'' + y(x) &=& 0 \\ y(x)'' &=& -y(x) \\ \hline \end{array}\)

 

We search a function which arises twice derived again, but with a negative algebraic sign.

There occurs very fast sin (x) or cos (x).

 

Example 1:

\(\begin{array}{|rcll|} \hline y(x) &=& c_1 \cdot \sin(x) \\ y'(x) &=& c_1 \cdot \cos(x) \\ y''(x) &=& -c_1 \cdot \sin(x) \\\\ \Rightarrow y''(x) &=& -y(x) \\ \hline \end{array}\)

 

Example 2:

\(\begin{array}{|rcll|} \hline y(x) &=& c_2 \cdot \cos(x) \\ y'(x) &=& -c_2 \cdot \sin(x) \\ y''(x) &=& -c_2 \cdot \cos(x) \\\\ \Rightarrow y''(x) &=& -y(x) \\ \hline \end{array}\)

 

The solution exists of a functional family and becomes unequivocal by initial conditions.

\(\begin{array}{|rcll|} \hline y_{family}(x) &=& c_1 \cdot \sin(x) + c_2 \cdot \cos(x) \\ y'(x) &=& c_1 \cdot \cos(x) - c_2 \cdot \sin(x) \\ y''(x) &=& -c_1 \cdot \sin(x) - c_2 \cdot \cos(x) \\ &=& - (c_1 \cdot \sin(x) + c_2 \cdot \cos(x)) \\ &=& -y(x) \ \checkmark \\ \hline \end{array}\)

 

computation of c1 and c2

\(\begin{array}{|rcll|} \hline y(x) &=& c_1 \cdot \sin(x) + c_2 \cdot \cos(x) \quad & | \quad y(0) = 2 \\ 2 &=& c_1 \cdot \sin(0) + c_2 \cdot \cos(0) \\ 2 &=& 0 + c_2 \cdot 1 \\ c_2 &=& 2 \\\\ y'(x) &=& c_1 \cdot \cos(x) - c_2 \cdot \sin(x) \quad & | \quad y'(0) = 1 \\ 1 &=& c_1 \cdot \cos(0) - c_2 \cdot \sin(0) \\ 1 &=& c_1 \cdot 1 - 0 \\ c_1 &=& 1 \\ \hline \end{array}\)

 

The function y(x):


\(\begin{array}{|rcll|} \hline y(x) &=& c_1 \cdot \sin(x) + c_2 \cdot \cos(x) \quad & | \quad c_1 = 1 \quad c_2 = 2 \\\\ y(x) &=& 1 \cdot \sin(x) + 2 \cdot \cos(x) \\ \mathbf{y(x)} & \mathbf{=} & \mathbf{ \sin(x) + 2 \cdot \cos(x) } \\ \hline \end{array}\)

 

laugh

13.12.2016
 #1
avatar+26387 
0

The graph of a transformed exponential function has the following characteristics:

horizontal asymptote at y = -9 passes through the points (-4, -8) and (-1, 18)

What are the coordinates of the x-intercept?

 

Formula:

Transformed Exponential Function in the Form \(y = b^{x–h} + k\)
h = Horizontal Shift
k = Vertical Shift

 

Horizontal asymptote at \(y = -9, \text{ so } k = -9\)

\(\begin{array}{|lrcll|} \hline \text{Point 1 }~ (-4,-8): & y &=& b^{x–h} - 9 \\ & -8 &=& b^{-4–h} - 9 \\ & 1 &=& b^{-4–h} \quad & | \quad \ln() \text{ both sides}\\ & \ln(1) &=& \ln(b^{-4–h}) \\ & \ln(1) &=& (-4–h)\cdot \ln(b) \quad & | \quad \ln(1) = 0 \\ & 0 &=& (-4–h)\cdot \ln(b) \quad & | \quad : \ln(b) \\ & 0 &=& -4–h \quad & | \quad +h \\ & \mathbf{h} & \mathbf{=} & \mathbf{ -4 } \\\\ \text{Point 2 }~ (-1,18): & y &=& b^{x–h} - 9 \\ & 18 &=& b^{-1–h} - 9 \\ & 27 &=& b^{-1–h} \quad & | \quad h = -4 \\ & 27 &=& b^{-1+4} \\ & 27 &=& b^{3} \quad & | \quad 27 = 3^3 \\ & 3^3 &=& b^{3} \quad & | \quad \sqrt[3]{} \text{ both sides}\\ & 3 &=& b \\ & \mathbf{b} & \mathbf{=} & \mathbf{3} \\ \hline \end{array} \)

 

The Transformed Exponential Function is  \(y = 3^{x+4} - 9\)

 

The coordinates of the x-intercept:

\(\begin{array}{|rcll|} \hline y &=& 3^{x+4} - 9 \quad & | \quad \mathbf{y = 0} \\ 0 &=& 3^{x+4} - 9 \quad & | \quad +9 \\ 9 &=& 3^{x+4} \quad & | \quad 9 = 3^2 \\ 3^2 &=& 3^{x+4} \\ 2 &=& x+4 \quad & | \quad -4 \\ 2-4 &=& x \\ -2 &=& x \\ \mathbf{x} & \mathbf{=} & \mathbf{-2} \\ \hline \end{array}\)

 

The coordinates of the x-intercept is (-2,0)

 

The graph is:

 

laugh

12.12.2016