The graph of a transformed exponential function has the following characteristics: horizontal asymptote at y = -9 passes through the points (-4, -8) and (-1, 18) What are the coordinates of the x-intercept?
The graph of a transformed exponential function has the following characteristics:
horizontal asymptote at y = -9 passes through the points (-4, -8) and (-1, 18)
What are the coordinates of the x-intercept?
Formula:
Transformed Exponential Function in the Form y=bx–h+k
h = Horizontal Shift
k = Vertical Shift
Horizontal asymptote at y=−9, so k=−9
Point 1 (−4,−8):y=bx–h−9−8=b−4–h−91=b−4–h|ln() both sidesln(1)=ln(b−4–h)ln(1)=(−4–h)⋅ln(b)|ln(1)=00=(−4–h)⋅ln(b)|:ln(b)0=−4–h|+hh=−4Point 2 (−1,18):y=bx–h−918=b−1–h−927=b−1–h|h=−427=b−1+427=b3|27=3333=b3|3√ both sides3=bb=3
The Transformed Exponential Function is y=3x+4−9
The coordinates of the x-intercept:
y=3x+4−9|y=00=3x+4−9|+99=3x+4|9=3232=3x+42=x+4|−42−4=x−2=xx=−2
The coordinates of the x-intercept is (-2,0)
The graph is: