Processing math: 100%
 
+0  
 
0
608
9
avatar

Hello, i have this problem ((12)+(12i)12i, how would i go at simplifying this, can i just divide the whole equation by 12?

 Dec 12, 2016
edited by Guest  Dec 12, 2016
edited by Guest  Dec 12, 2016

Best Answer 

 #6
avatar+33658 
+5

You must have used sqrt2i) instead of sqrt(2)i to get your result Guest #5.

 Dec 12, 2016
 #1
avatar
0

ok answer is 1+i nvm

 Dec 12, 2016
edited by Guest  Dec 12, 2016
 #2
avatar
0

Simplify the following:
(1 - sqrt(2) + 1 - sqrt(2 i))/(1 - sqrt(2 i))

2 i = 1 + 2 i - 1 = 1 + 2 i + i^2 = (1 + i)^2:
(1 - sqrt(2) + 1 - sqrt((1 + i)^2 ) )/(1 - sqrt(2 i))

Cancel exponents. sqrt((1 + i)^2) = 1 + i:
(1 - sqrt(2) + 1 - 1 + i)/(1 - sqrt(2 i))

1 - sqrt(2) + 1 - (1 + i) = 1 - i - sqrt(2):
(1 - i - sqrt(2))/(1 - sqrt(2 i))

2 i = 1 + 2 i - 1 = 1 + 2 i + i^2 = (1 + i)^2:
(1 - i - sqrt(2))/(1 - sqrt((1 + i)^2 ) )

Cancel exponents. sqrt((1 + i)^2) = 1 + i:
(1 - i - sqrt(2))/(1 - 1 + i)

-(i + 1) = -1 - i:
(1 - i - sqrt(2))/(1 + -i - 1)

1 - 1 - i = (1 - 1) - i = -i:
(1 - i - sqrt(2))/(-i)

Multiply numerator and denominator of (1 - i - sqrt(2))/(-i) by -1:
(-(1 - i - sqrt(2)))/(i)

-((1 - i) - sqrt(2)) = (-1 + i) + sqrt(2):
(-1 + i + sqrt(2))/(i)

Multiply numerator and denominator of (-1 + i + sqrt(2))/(i) by -i:
((-1 + i + sqrt(2)) (-i))/(i (-i))

i×i = -1:
((-1 + i + sqrt(2)) (-i))/(--1)

((-1 + i + sqrt(2)) (-i))/(-(-1)) = (-1)/(-1)×((-1 + i + sqrt(2))×i)/(-1) = ((-1 + i + sqrt(2))×i)/(-1):
((-1 + i + sqrt(2))×i)/(-1)

Multiply numerator and denominator of ((-1 + i + sqrt(2))×i)/(-1) by -1:
-(-1 + i + sqrt(2))×i

i ((-1 + i) + sqrt(2)) = i sqrt(2) - (1 + i):
--1 - i + i sqrt(2)

-(i sqrt(2) - (1 + i)) = -(-1 - i) - i sqrt(2):
-(i sqrt(2)) - (-i - 1)

-(-1 - i) = i + 1:
Answer: |1 + i - i sqrt(2)

 Dec 12, 2016
 #3
avatar+118703 
+5

\frac{((1-\sqrt{2})+(1-\sqrt{2}i)}{1-\sqrt{2}i}

 

((12)+(12i)12i=(222i)12i=(222i)12i×1+2i1+2i=(1+2i)(222i)12(2i)2=(222i)+(2i)(222i)1(21)=(222i)+(22i22i22ii)3=222i+22i2i+23=42+2i2i3=42+(22)i3

 Dec 12, 2016
 #4
avatar+26397 
+5

Hello, i have this problem
(12)+(12i)12i
, how would i go at simplifying this.

 

(12)+(12i)12i=1212i+12i12i=1212i+1=(12)(12i)(1+2i)(1+2i)+1=1(1+2i)2(1+2i)(12i)(1+2i)+1=1+2i222i(12i)(1+2i)+1=12+2i2i(12i)(1+2i)+1=12+(22)i(12i)(1+2i)+1=12+(22)i[12(2i)2]+1=12+(22)i12i2+1|i2=1=12+(22)i12(1)+1=12+(22)i1+2+1=12+(22)i3+1=12+(22)i3+33=42+(22)i3=42+(22)i3=423+(22)3i=0.861928812542301650399437...0.195262145875634983732770...i

 

laugh

 Dec 12, 2016
 #5
avatar
+5

Melody and heureka:

Why does Wolfram/Alpha give this, very different, numerical result from both your answers?


1 - 0.4142135623... i

 Dec 12, 2016
 #6
avatar+33658 
+5
Best Answer

You must have used sqrt2i) instead of sqrt(2)i to get your result Guest #5.

Alan  Dec 12, 2016
 #8
avatar+33658 
0

To clarify, I mean you have included the i under the square root signs, which the original question doesn't do.

Alan  Dec 12, 2016
 #7
avatar+118703 
0

Put it into Wolframalpha and then copy and paste the link into a new post on this thread. 

Then we'll be able to see what you have done and we will probaby see why the answer is different.  :)

If you were a member you could message us the link as older posts can sometimes be hard to find ://

But we will probably see it anyway.  :)

 Dec 12, 2016
 #9
avatar
0

OK. Thanks Alan. I included 2i under the sqrt sign, instead of just 2. Sorry about that.

 Dec 12, 2016

0 Online Users