Hello, i have this problem ((1−√2)+(1−√2i)1−√2i, how would i go at simplifying this, can i just divide the whole equation by 1−√2?
Simplify the following:
(1 - sqrt(2) + 1 - sqrt(2 i))/(1 - sqrt(2 i))
2 i = 1 + 2 i - 1 = 1 + 2 i + i^2 = (1 + i)^2:
(1 - sqrt(2) + 1 - sqrt((1 + i)^2 ) )/(1 - sqrt(2 i))
Cancel exponents. sqrt((1 + i)^2) = 1 + i:
(1 - sqrt(2) + 1 - 1 + i)/(1 - sqrt(2 i))
1 - sqrt(2) + 1 - (1 + i) = 1 - i - sqrt(2):
(1 - i - sqrt(2))/(1 - sqrt(2 i))
2 i = 1 + 2 i - 1 = 1 + 2 i + i^2 = (1 + i)^2:
(1 - i - sqrt(2))/(1 - sqrt((1 + i)^2 ) )
Cancel exponents. sqrt((1 + i)^2) = 1 + i:
(1 - i - sqrt(2))/(1 - 1 + i)
-(i + 1) = -1 - i:
(1 - i - sqrt(2))/(1 + -i - 1)
1 - 1 - i = (1 - 1) - i = -i:
(1 - i - sqrt(2))/(-i)
Multiply numerator and denominator of (1 - i - sqrt(2))/(-i) by -1:
(-(1 - i - sqrt(2)))/(i)
-((1 - i) - sqrt(2)) = (-1 + i) + sqrt(2):
(-1 + i + sqrt(2))/(i)
Multiply numerator and denominator of (-1 + i + sqrt(2))/(i) by -i:
((-1 + i + sqrt(2)) (-i))/(i (-i))
i×i = -1:
((-1 + i + sqrt(2)) (-i))/(--1)
((-1 + i + sqrt(2)) (-i))/(-(-1)) = (-1)/(-1)×((-1 + i + sqrt(2))×i)/(-1) = ((-1 + i + sqrt(2))×i)/(-1):
((-1 + i + sqrt(2))×i)/(-1)
Multiply numerator and denominator of ((-1 + i + sqrt(2))×i)/(-1) by -1:
-(-1 + i + sqrt(2))×i
i ((-1 + i) + sqrt(2)) = i sqrt(2) - (1 + i):
--1 - i + i sqrt(2)
-(i sqrt(2) - (1 + i)) = -(-1 - i) - i sqrt(2):
-(i sqrt(2)) - (-i - 1)
-(-1 - i) = i + 1:
Answer: |1 + i - i sqrt(2)
\frac{((1-\sqrt{2})+(1-\sqrt{2}i)}{1-\sqrt{2}i}
((1−√2)+(1−√2i)1−√2i=(2−√2−√2i)1−√2i=(2−√2−√2i)1−√2i×1+√2i1+√2i=(1+√2i)(2−√2−√2i)12−(√2i)2=(2−√2−√2i)+(√2i)(2−√2−√2i)1−(2∗−1)=(2−√2−√2i)+(2√2i−√2√2i−√2√2ii)3=2−√2−√2i+2√2i−2i+23=4−√2+√2i−2i3=4−√2+(√2−2)i3
Hello, i have this problem
(1−√2)+(1−√2i)1−√2i
, how would i go at simplifying this.
(1−√2)+(1−√2i)1−√2i=1−√21−√2i+1−√2i1−√2i=1−√21−√2i+1=(1−√2)(1−√2i)⋅(1+√2i)(1+√2i)+1=1⋅(1+√2i)−√2(1+√2i)(1−√2i)(1+√2i)+1=1+√2i−√2−√2√2i(1−√2i)(1+√2i)+1=1−√2+√2i−2i(1−√2i)(1+√2i)+1=1−√2+(√2−2)i(1−√2i)(1+√2i)+1=1−√2+(√2−2)i[12−(√2i)2]+1=1−√2+(√2−2)i1−2i2+1|i2=−1=1−√2+(√2−2)i1−2⋅(−1)+1=1−√2+(√2−2)i1+2+1=1−√2+(√2−2)i3+1=1−√2+(√2−2)i3+33=4−√2+(√2−2)i3=4−√2+(√2−2)i3=4−√23+(√2−2)3i=0.861928812542301650399437...−0.195262145875634983732770...i
Melody and heureka:
Why does Wolfram/Alpha give this, very different, numerical result from both your answers?
1 - 0.4142135623... i
Put it into Wolframalpha and then copy and paste the link into a new post on this thread.
Then we'll be able to see what you have done and we will probaby see why the answer is different. :)
If you were a member you could message us the link as older posts can sometimes be hard to find ://
But we will probably see it anyway. :)