3^x=5x
We can use the Lambert W Function.
The link to the Lambert W Function Calculator is:
http://www.had2know.com/academics/lambert-w-function-calculator.html
\(\begin{array}{|rcll|} \hline 3^x &=& 5x \quad & | \quad \text{change of basis} \\ e^{x\ln(3)} &=& 5x \quad & | \quad : e^{x\ln(3)} \\ 1 &=& 5x \cdot e^{-x\ln(3)} \quad & | \quad : 5\\ \frac{1}{5} &=& x \cdot e^{-x\ln(3)} \quad & | \quad \cdot (- \ln(3)) \\\\ \mathbf{-\frac{\ln(3)}{5}} & \mathbf{=}& \mathbf{-x\ln(3) \cdot e^{-x\ln(3)}} \\ && \text{The Lambert W function is the inverse} \\ && \text{ of the function } f(x) = xe^x \\\\ -x\ln(3) &=& W( -\frac{\ln(3)}{5} ) \quad & | \quad : (- \ln(3)) \\ x &=& \frac{1}{- \ln(3)} \cdot W( -\frac{\ln(3)}{5} ) \\ \hline \end{array} \)
We calculate \(W( -\frac{\ln(3)}{5} ) = W(-0.21972245773)\)
Because the parameter -0.21972245773 is in the interval (-1/e, 0), the funcion returns two values.
\(\begin{array}{|rcll|} \hline v_1 = -2.384291 \\ v_2 = -0.295163 \\ \hline \end{array}\)
We calculate x1 and x2:
\(\begin{array}{|rcll|} \hline x_1 &=& \frac{1}{- \ln(3)} \cdot v_1 \\ x_1 &=& -\frac{1}{\ln(3)} \cdot (-2.384291) \\ \mathbf{x_1} &\mathbf{=} & \mathbf{2.170275} \\\\ x_2 &=& \frac{1}{- \ln(3)} \cdot v_2 \\ x_2 &=& -\frac{1}{\ln(3)} \cdot (-0.295163) \\ \mathbf{x_2} &\mathbf{=} & \mathbf{0.268669} \\ \hline \end{array} \)
The image:
Hello Melody,
...Euler's formula is true for every polyhedron.
The only polyhedra for which it doesn't work are those that have holes running through them like the one shown in the figure below...
...It involves the Platonic Solids, a well-known class of polyhedra named after the ancient Greek philosopher Plato, in whose writings they first appeared....
see: https://plus.maths.org/content/eulers-polyhedron-formula
What is e=nf/2?
The Platonic Solids:
Euler's formula:
V - E + F = 2.
the number of vertices(V), minus the number of edges(E), plus the number of faces(F), is equal to two.
see e=nf/2 in : Proof of five Platonic solids in link:
http://www.physics.miami.edu/huerta/class/mls603/Platonic_Solids_proof.pdf;3