Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26396 
0

What is the tenth term of this function?

f(1) = 30, f(n) = 3 × f(n − 1) − 90

 

fn=3fn190f1=30f10= ?

 

f1=30f2=31f13090f3=3f290=3(3f190)90=32f131903090f4=3f390=3(32f139090)90=33f1329031903090f5=3f490=3(33f1329031903090)90=34f13390329031903090fn=3n1f13n2903n3903090fn=3n1f190(3n2+3n3++1)=3n112fn=3n1f1903n112fn=3n1f145(3n11)fn=15(3n13)

 

fn=15(3n13)f10=15(393)f10=15(196833)f10=1519680f10=295200

 

laugh

12.12.2016
 #4
avatar+26396 
0

Stimmt diese Ableitung  von
y=2x+1x42x3+x2y=2x+1(x42x3+x2)1

 

Leider ist deine Umformung falsch. Es muss 2x+1 in Klammern gesetzt sein.

So wäre deine Umformung richtig: y=(2x+1)[(x42x3+x2)]1

 

y=(2x+1)[(x42x3+x2)]1|x42x3+x2=x2(x22x+1)y=(2x+1)[x2(x22x+1)]1|x22x+1=(x1)2y=(2x+1)[x2(x1)2]1y=(2x+1)x2(x1)2

 

Nun kommen wir zur Ableitung.

Unsere Formel dazu lautet allgemein: y=uvwy=(uvw)=uvw+uvw+uvw

y=(2x+1)=ux2=v(x1)2=wu=2v=2x3w=2(x1)31y=uvw+uvw+uvwy=(2)x2(x1)2+(2x+1)(2x3)(x1)2+(2x+1)x2[2(x1)3]y=2x2(x1)2+(2x+1)(2)x3(x1)2+(2x+1)(2)x2(x1)3y=2x2(x1)2x(x1)x(x1)+(2x+1)(2)x3(x1)2(x1)(x1)+(2x+1)(2)x2(x1)3xxy=(2)x(x1)+(2x+1)(2)(x1)+(2x+1)(2)xx3(x1)3y=(2)x(x1)+(2x+1)(2)[(x1)+x]x3(x1)3y=(2)x(x1)+(2x+1)(2)(2x1)x3(x1)3y=(2x)(x1)+(4x2)(2x1)x3(x1)3y=2x2+2x+8x24x4x+2x3(x1)3y=6x26x+2x3(x1)3

 

laugh

12.12.2016
 #1
avatar+26396 
+5

Can anybody derive this expression:

arctan(a1/b1) + arctan(a2/b2) = arctan[a1b2 + a2b1] / [b1b2 - a1a2],

IF

-Pi/2 < arctan(a1/b1) + arctan(a2/b2) < Pi/2 {nl} From these two? 

Sin(a + b) = SinaCosb + CosaSinb, and

Cos(a + b) = CosaCosb - SinaSinb

 

Leta=arctan(a1b1)Letb=arctan(a2b2)

 

sin(a+b)=sin(a)cos(b)+cos(a)sin(b)|a=arctan(a1b1)b=arctan(a2b2)sin(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1))cos(arctan(a2b2))+cos(arctan(a1b1))sin(arctan(a2b2))cos(a+b)=cos(a)cos(b)sin(a)sin(b)|a=arctan(a1b1)b=arctan(a2b2)cos(arctan(a1b1)+arctan(a2b2))=cos(arctan(a1b1))cos(arctan(a2b2))sin(arctan(a1b1))sin(arctan(a2b2))

 

tan(a+b)=sin(a+b)cos(a+b)|a=arctan(a1b1)b=arctan(a2b2)tan(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1)+arctan(a2b2))cos(arctan(a1b1)+arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1))cos(arctan(a2b2))+cos(arctan(a1b1))sin(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))sin(arctan(a1b1))sin(arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1))cos(arctan(a2b2))+cos(arctan(a1b1))sin(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))sin(arctan(a1b1))sin(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1))cos(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))+cos(arctan(a1b1))sin(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))sin(arctan(a1b1))sin(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1))cos(arctan(a1b1))+sin(arctan(a2b2))cos(arctan(a2b2))1sin(arctan(a1b1))sin(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=tan(arctan(a1b1))+tan(arctan(a2b2))1tan(arctan(a1b1))tan(arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=a1b1+a2b21a1b1a2b2tan(arctan(a1b1)+arctan(a2b2))=a1b2+a2b1b1b2b1b2a1a2b1b2tan(arctan(a1b1)+arctan(a2b2))=a1b2+a2b1b1b2a1a2|arctan() both sides arctan(a1b1)+arctan(a2b2)=arctan(a1b2+a2b1b1b2a1a2)

 

laugh

09.12.2016
 #1