heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #4
avatar+26387 
0

Stimmt diese Ableitung  von
\(y = \frac{-2x+1}{x^4-2x^3+x^2} \Rightarrow y=-2x+1 {(x^4-2x^3+x^2)}^{-1} \)

 

Leider ist deine Umformung falsch. Es muss \(-2x+1\) in Klammern gesetzt sein.

So wäre deine Umformung richtig: \(y=(-2x+1 )\cdot [(x^4-2x^3+x^2)]^{-1}\)

 

\(\begin{array}{|rcll|} \hline y &=& (-2x+1 ) \cdot [(x^4-2x^3+x^2)]^{-1} \quad &| \quad x^4-2x^3+x^2 = x^2\cdot(x^2-2x+1) \\\\ y &=& (-2x+1 ) \cdot [x^2\cdot(x^2-2x+1)]^{-1}\quad &| \quad x^2-2x+1 = (x-1)^2 \\\\ y &=& (-2x+1 ) \cdot [x^2\cdot(x-1)^2]^{-1} \\\\ y &=& (-2x+1 ) \cdot x^{-2} \cdot (x-1)^{-2} \\ \hline \end{array} \)

 

Nun kommen wir zur Ableitung.

Unsere Formel dazu lautet allgemein: \(y=u \cdot v \cdot w\qquad y'= (u \cdot v \cdot w)' = u'\cdot v \cdot w + u\cdot v' \cdot w +u\cdot v \cdot w'\)

\(\begin{array}{|rcll|} \hline y &=& \underbrace{(-2x+1 )}_{=u} \cdot \underbrace{x^{-2}}_{=v} \cdot \underbrace{(x-1)^{-2}}_{=w} \\ && u' = -2 \\ && v' = -2\cdot x^{-3} \\ && w' = -2\cdot (x-1)^{-3}\cdot 1 \\\\ y' &=& u'\cdot v \cdot w + u\cdot v' \cdot w +u\cdot v \cdot w' \\\\ y' &=& (-2)\cdot x^{-2} \cdot (x-1)^{-2} \\ && + (-2x+1 ) \cdot (-2\cdot x^{-3}) \cdot (x-1)^{-2} \\ && + (-2x+1 )\cdot x^{-2} \cdot [-2\cdot (x-1)^{-3}] \\\\ y' &=& \frac{-2}{ x^2 \cdot (x-1)^2 } + \frac{ (-2x+1)\cdot(-2)} { x^3 \cdot (x-1)^2 } + \frac{(-2x+1)\cdot (-2)} { x^2\cdot (x-1)^3 } \\\\ y' &=& \frac{-2}{ x^2 \cdot (x-1)^2 } \cdot \frac{x\cdot(x-1)}{x\cdot(x-1)} + \frac{ (-2x+1)\cdot(-2)} { x^3 \cdot (x-1)^2 }\cdot \frac{(x-1)}{(x-1)} + \frac{(-2x+1)\cdot (-2)} { x^2\cdot (x-1)^3 } \cdot \frac{x}{x} \\\\ y' &=& \frac{(-2)\cdot x\cdot(x-1) + (-2x+1)\cdot(-2)\cdot (x-1) + (-2x+1)\cdot (-2)\cdot x } { x^3\cdot (x-1)^3 } \\\\ y' &=& \frac{(-2)\cdot x\cdot(x-1) + (-2x+1)\cdot(-2)\cdot[(x-1) + x] } { x^3\cdot (x-1)^3 } \\\\ y' &=& \frac{(-2)\cdot x\cdot(x-1) + (-2x+1)\cdot(-2)\cdot(2x-1) } { x^3\cdot (x-1)^3 } \\\\ y' &=& \frac{ (-2x)\cdot(x-1) + (4x-2) \cdot(2x-1) } { x^3\cdot (x-1)^3 } \\\\ y' &=& \frac{ -2x^2+2x + 8x^2-4x-4x+2 } { x^3\cdot (x-1)^3 } \\\\ y' &=& \frac{6x^2-6x+2 } { x^3\cdot (x-1)^3 } \\\\ \hline \end{array}\)

 

laugh

12.12.2016
 #1
avatar+26387 
+5

Can anybody derive this expression:

arctan(a1/b1) + arctan(a2/b2) = arctan[a1b2 + a2b1] / [b1b2 - a1a2],

IF

-Pi/2 < arctan(a1/b1) + arctan(a2/b2) < Pi/2 {nl} From these two? 

Sin(a + b) = SinaCosb + CosaSinb, and

Cos(a + b) = CosaCosb - SinaSinb

 

\(\begin{array}{|lrcll|} \hline \text{Let} & a &=& \arctan(\frac{a_1}{b_1}) \\ \text{Let} & b &=& \arctan(\frac{a_2}{b_2}) \\ \hline \end{array}\)

 

\(\small{ \begin{array}{rcll} \sin(a + b) &=& \sin(a) \cdot \cos(b) + \cos(a) \cdot \sin(b) \quad |\quad a = \arctan(\frac{a_1}{b_1}) \quad b = \arctan(\frac{a_2}{b_2})\\\\ \sin(\arctan(\frac{a_1}{b_1}) + \arctan(\frac{a_2}{b_2})) &=& \sin(\arctan(\frac{a_1}{b_1})) \cdot \cos(\arctan(\frac{a_2}{b_2})) + \cos(\arctan(\frac{a_1}{b_1})) \cdot \sin(\arctan(\frac{a_2}{b_2})) \\\\ \hline \\ \cos(a + b) &=& \cos(a) \cdot \cos(b) - \sin(a) \cdot \sin(b) \quad |\quad a = \arctan(\frac{a_1}{b_1}) \quad b = \arctan(\frac{a_2}{b_2})\\\\ \cos(\arctan(\frac{a_1}{b_1}) + \arctan(\frac{a_2}{b_2})) &=& \cos(\arctan(\frac{a_1}{b_1})) \cdot \cos(\arctan(\frac{a_2}{b_2})) - \sin(\arctan(\frac{a_1}{b_1})) \cdot \sin(\arctan(\frac{a_2}{b_2})) \\\\ \end{array} }\)

 

\(\begin{array}{|rcll|} \hline \tan(a+b) &=& \frac{\sin(a+b)}{\cos(a+b)} \quad |\quad a = \arctan(\frac{a_1}{b_1}) \quad b = \arctan(\frac{a_2}{b_2})\\\\ \tan(\arctan(\frac{a_1}{b_1})+\arctan(\frac{a_2}{b_2})) &=& \frac{\sin(\arctan(\frac{a_1}{b_1})+\arctan(\frac{a_2}{b_2}))}{\cos(\arctan(\frac{a_1}{b_1})+\arctan(\frac{a_2}{b_2}))} \\ \tan(\arctan(\frac{a_1}{b_1})+\arctan(\frac{a_2}{b_2})) &=& \frac { \sin(\arctan(\frac{a_1}{b_1})) \cdot \cos(\arctan(\frac{a_2}{b_2})) + \cos(\arctan(\frac{a_1}{b_1})) \cdot \sin(\arctan(\frac{a_2}{b_2})) } { \cos(\arctan(\frac{a_1}{b_1})) \cdot \cos(\arctan(\frac{a_2}{b_2})) - \sin(\arctan(\frac{a_1}{b_1})) \cdot \sin(\arctan(\frac{a_2}{b_2})) } \\ \tan(\arctan(\frac{a_1}{b_1})+\arctan(\frac{a_2}{b_2})) &=& \frac { \frac{ \sin(\arctan(\frac{a_1}{b_1})) \cdot \cos(\arctan(\frac{a_2}{b_2})) + \cos(\arctan(\frac{a_1}{b_1})) \cdot \sin(\arctan(\frac{a_2}{b_2})) } {\cos(\arctan(\frac{a_1}{b_1})) \cdot \cos(\arctan(\frac{a_2}{b_2}))} } { \frac{ \cos(\arctan(\frac{a_1}{b_1})) \cdot \cos(\arctan(\frac{a_2}{b_2})) - \sin(\arctan(\frac{a_1}{b_1})) \cdot \sin(\arctan(\frac{a_2}{b_2})) } {\cos(\arctan(\frac{a_1}{b_1})) \cdot \cos(\arctan(\frac{a_2}{b_2}))} }\\ \tan(\arctan(\frac{a_1}{b_1})+\arctan(\frac{a_2}{b_2})) &=& \frac { \frac{ \sin(\arctan(\frac{a_1}{b_1})) \cdot \cos(\arctan(\frac{a_2}{b_2}))}{\cos(\arctan(\frac{a_1}{b_1})) \cdot \cos(\arctan(\frac{a_2}{b_2}))} + \frac{\cos(\arctan(\frac{a_1}{b_1})) \cdot \sin(\arctan(\frac{a_2}{b_2})) } {\cos(\arctan(\frac{a_1}{b_1})) \cdot \cos(\arctan(\frac{a_2}{b_2}))} } { \frac{ \cos(\arctan(\frac{a_1}{b_1})) \cdot \cos(\arctan(\frac{a_2}{b_2}))}{\cos(\arctan(\frac{a_1}{b_1})) \cdot \cos(\arctan(\frac{a_2}{b_2}))} - \frac{\sin(\arctan(\frac{a_1}{b_1})) \cdot \sin(\arctan(\frac{a_2}{b_2})) } {\cos(\arctan(\frac{a_1}{b_1})) \cdot \cos(\arctan(\frac{a_2}{b_2}))} }\\ \tan(\arctan(\frac{a_1}{b_1})+\arctan(\frac{a_2}{b_2})) &=& \frac { \frac{ \sin(\arctan(\frac{a_1}{b_1}))} {\cos(\arctan(\frac{a_1}{b_1})) } + \frac{\sin(\arctan(\frac{a_2}{b_2})) } {\cos(\arctan(\frac{a_2}{b_2}))} } { 1 - \frac{\sin(\arctan(\frac{a_1}{b_1})) \cdot \sin(\arctan(\frac{a_2}{b_2})) } {\cos(\arctan(\frac{a_1}{b_1})) \cdot \cos(\arctan(\frac{a_2}{b_2}))} }\\ \tan(\arctan(\frac{a_1}{b_1})+\arctan(\frac{a_2}{b_2})) &=& \frac { \tan(\arctan(\frac{a_1}{b_1})) + \tan(\arctan(\frac{a_2}{b_2})) } { 1 - \tan(\arctan(\frac{a_1}{b_1})) \cdot \tan(\arctan(\frac{a_2}{b_2})) }\\ \tan(\arctan(\frac{a_1}{b_1})+\arctan(\frac{a_2}{b_2})) &=& \frac { \frac{a_1}{b_1} + \frac{a_2}{b_2} } { 1 - \frac{a_1}{b_1} \cdot \frac{a_2}{b_2} }\\ \tan(\arctan(\frac{a_1}{b_1})+\arctan(\frac{a_2}{b_2})) &=& \frac { \frac{ a_1b_2+a_2b_1}{b_1b_2} } { \frac{ b_1b_2-a_1a_2}{b_1b_2} }\\ \tan(\arctan(\frac{a_1}{b_1})+\arctan(\frac{a_2}{b_2})) &=& \frac{ a_1b_2+a_2b_1 }{ b_1b_2-a_1a_2 } \quad | \quad \arctan() \text{ both sides }\\\\ \mathbf{ \arctan(\frac{a_1}{b_1})+\arctan(\frac{a_2}{b_2}) } & \mathbf{=} & \mathbf{ \arctan(\frac{ a_1b_2+a_2b_1 }{ b_1b_2-a_1a_2 }) } \\ \hline \end{array} \)

 

laugh

09.12.2016