Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
713
2
avatar

Can anybody derive this expression:
arctan(a1/b1) + arctan(a2/b2) = arctan[a1b2 + a2b1] / [b1b2 - a1a2], IF
-Pi/2 < arctan(a1/b1) + arctan(a2/b2) < Pi/2
From these two?
Sin(a + b) = SinaCosb + CosaSinb, and
Cos(a + b) = CosaCosb - SinaSinb
Thanks for any help.

 Dec 8, 2016

Best Answer 

 #2
avatar+118702 
+6

Once again,  that is an impressive effort  Heureka   laugh

 Dec 9, 2016
 #1
avatar+26396 
+5

Can anybody derive this expression:

arctan(a1/b1) + arctan(a2/b2) = arctan[a1b2 + a2b1] / [b1b2 - a1a2],

IF

-Pi/2 < arctan(a1/b1) + arctan(a2/b2) < Pi/2 {nl} From these two? 

Sin(a + b) = SinaCosb + CosaSinb, and

Cos(a + b) = CosaCosb - SinaSinb

 

Leta=arctan(a1b1)Letb=arctan(a2b2)

 

sin(a+b)=sin(a)cos(b)+cos(a)sin(b)|a=arctan(a1b1)b=arctan(a2b2)sin(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1))cos(arctan(a2b2))+cos(arctan(a1b1))sin(arctan(a2b2))cos(a+b)=cos(a)cos(b)sin(a)sin(b)|a=arctan(a1b1)b=arctan(a2b2)cos(arctan(a1b1)+arctan(a2b2))=cos(arctan(a1b1))cos(arctan(a2b2))sin(arctan(a1b1))sin(arctan(a2b2))

 

tan(a+b)=sin(a+b)cos(a+b)|a=arctan(a1b1)b=arctan(a2b2)tan(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1)+arctan(a2b2))cos(arctan(a1b1)+arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1))cos(arctan(a2b2))+cos(arctan(a1b1))sin(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))sin(arctan(a1b1))sin(arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1))cos(arctan(a2b2))+cos(arctan(a1b1))sin(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))sin(arctan(a1b1))sin(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1))cos(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))+cos(arctan(a1b1))sin(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))sin(arctan(a1b1))sin(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1))cos(arctan(a1b1))+sin(arctan(a2b2))cos(arctan(a2b2))1sin(arctan(a1b1))sin(arctan(a2b2))cos(arctan(a1b1))cos(arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=tan(arctan(a1b1))+tan(arctan(a2b2))1tan(arctan(a1b1))tan(arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=a1b1+a2b21a1b1a2b2tan(arctan(a1b1)+arctan(a2b2))=a1b2+a2b1b1b2b1b2a1a2b1b2tan(arctan(a1b1)+arctan(a2b2))=a1b2+a2b1b1b2a1a2|arctan() both sides arctan(a1b1)+arctan(a2b2)=arctan(a1b2+a2b1b1b2a1a2)

 

laugh

 Dec 9, 2016
edited by heureka  Dec 9, 2016
 #2
avatar+118702 
+6
Best Answer

Once again,  that is an impressive effort  Heureka   laugh

Melody Dec 9, 2016

1 Online Users

avatar