Can anybody derive this expression:
arctan(a1/b1) + arctan(a2/b2) = arctan[a1b2 + a2b1] / [b1b2 - a1a2], IF
-Pi/2 < arctan(a1/b1) + arctan(a2/b2) < Pi/2
From these two?
Sin(a + b) = SinaCosb + CosaSinb, and
Cos(a + b) = CosaCosb - SinaSinb
Thanks for any help.
Can anybody derive this expression:
arctan(a1/b1) + arctan(a2/b2) = arctan[a1b2 + a2b1] / [b1b2 - a1a2],
IF
-Pi/2 < arctan(a1/b1) + arctan(a2/b2) < Pi/2 {nl} From these two?
Sin(a + b) = SinaCosb + CosaSinb, and
Cos(a + b) = CosaCosb - SinaSinb
Leta=arctan(a1b1)Letb=arctan(a2b2)
sin(a+b)=sin(a)⋅cos(b)+cos(a)⋅sin(b)|a=arctan(a1b1)b=arctan(a2b2)sin(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1))⋅cos(arctan(a2b2))+cos(arctan(a1b1))⋅sin(arctan(a2b2))cos(a+b)=cos(a)⋅cos(b)−sin(a)⋅sin(b)|a=arctan(a1b1)b=arctan(a2b2)cos(arctan(a1b1)+arctan(a2b2))=cos(arctan(a1b1))⋅cos(arctan(a2b2))−sin(arctan(a1b1))⋅sin(arctan(a2b2))
tan(a+b)=sin(a+b)cos(a+b)|a=arctan(a1b1)b=arctan(a2b2)tan(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1)+arctan(a2b2))cos(arctan(a1b1)+arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1))⋅cos(arctan(a2b2))+cos(arctan(a1b1))⋅sin(arctan(a2b2))cos(arctan(a1b1))⋅cos(arctan(a2b2))−sin(arctan(a1b1))⋅sin(arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1))⋅cos(arctan(a2b2))+cos(arctan(a1b1))⋅sin(arctan(a2b2))cos(arctan(a1b1))⋅cos(arctan(a2b2))cos(arctan(a1b1))⋅cos(arctan(a2b2))−sin(arctan(a1b1))⋅sin(arctan(a2b2))cos(arctan(a1b1))⋅cos(arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1))⋅cos(arctan(a2b2))cos(arctan(a1b1))⋅cos(arctan(a2b2))+cos(arctan(a1b1))⋅sin(arctan(a2b2))cos(arctan(a1b1))⋅cos(arctan(a2b2))cos(arctan(a1b1))⋅cos(arctan(a2b2))cos(arctan(a1b1))⋅cos(arctan(a2b2))−sin(arctan(a1b1))⋅sin(arctan(a2b2))cos(arctan(a1b1))⋅cos(arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=sin(arctan(a1b1))cos(arctan(a1b1))+sin(arctan(a2b2))cos(arctan(a2b2))1−sin(arctan(a1b1))⋅sin(arctan(a2b2))cos(arctan(a1b1))⋅cos(arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=tan(arctan(a1b1))+tan(arctan(a2b2))1−tan(arctan(a1b1))⋅tan(arctan(a2b2))tan(arctan(a1b1)+arctan(a2b2))=a1b1+a2b21−a1b1⋅a2b2tan(arctan(a1b1)+arctan(a2b2))=a1b2+a2b1b1b2b1b2−a1a2b1b2tan(arctan(a1b1)+arctan(a2b2))=a1b2+a2b1b1b2−a1a2|arctan() both sides arctan(a1b1)+arctan(a2b2)=arctan(a1b2+a2b1b1b2−a1a2)