heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26387 
+5

Find the x-coordinates of the points where the line y=5x-1 meets the curve y= 2x^3 + x^2 +1.

I keep solving but I can't seem to get anything right,

especially when I set these two next to each other.

 

 

Intersections:

\(\begin{array}{|rcll|} \hline y_{\text{line}} &=& y_{\text{curve}} \\ 5x-1 &=& 2x^3 + x^2 +1 \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline 2x^3 + x^2 +1 &=& 5x-1 \quad & | \quad -5x+1 \\ 2x^3 + x^2 +1 -5x+1 &=& 0 \\ 2x^3 + x^2 -5x +2 &=& 0 \quad & | \quad :2 \\ x^3 + \frac12 x^2 -\frac52x +\color{red}{1} &=& 0 \\ \hline \end{array}\)

 

We get the rational solutions, when we test all dividers from the absolut term 1:

We must test +1 or -1.

For +1 we get the first root \(x_1\): \(1^3 + \frac12 \cdot 1^2 -\frac52 \cdot 1 + 1 = 1+ \frac12 -\frac52+1 = 0 \)

\(\begin{array}{|rcll|} \hline x_1 = 1 \\ \hline \end{array}\)

 

We know that \((x-x_1)\) is a divider of  \( x^3 + \frac12 x^2 -\frac52x +1\)

\(( x^3 + \frac12 x^2 -\frac52x +1) : (x-1) = (x^2+1.5x-1 )\)

 

Because \(( x^3 + \frac12 x^2 -\frac52x +1) = (x-1)\cdot (x^2+1.5x-1 ) = 0 \)
we find the roots \(x_2\) and \(x_3\), if we set  \(x^2+1.5x-1 = 0\)

 

\(\begin{array}{|rcll|} \hline x^2+1.5x-1 &=& 0 \\ x &=& \frac{-1.5\pm \sqrt{1.5^2-4\cdot 1 \cdot (-1) } }{2} \\ x &=& \frac{-1.5\pm \sqrt{2.25+4} }{2} \\ x &=& \frac{-1.5\pm \sqrt{6.25} }{2} \\ x &=& \frac{-1.5\pm 2.5 }{2} \\\\ x_2 &=& \frac{-1.5+ 2.5 }{2} \\ x_2 &=& \frac{1 }{2} \\ \mathbf{x_2} &\mathbf{=}& \mathbf{0.5} \\\\ x_3 &=& \frac{-1.5 - 2.5 }{2} \\ x_3 &=& \frac{-4 }{2} \\ \mathbf{x_3} &\mathbf{=}& \mathbf{-2}\\ \hline \end{array}\)

 

The x-coordinates of the intersection-points are: \(x_1 = 1, x_2 = 0.5, ~ \text{and}~ x_ 3 = -2\)

 

laugh

02.12.2016
 #4
avatar+26387 
0

 Simplify c**p with radicals

 

 

 

\(\begin{array}{|rcll|} \hline && 2\cdot[~\frac14 (\sqrt{5}-1)~]\cdot \sqrt{\frac18\cdot (5+\sqrt{5}) } \\ &=& \frac24\cdot (\sqrt{5}-1)\cdot \sqrt{\frac18\cdot (5+\sqrt{5}) } \\ &=& \frac12\cdot (\sqrt{5}-1)\cdot \sqrt{\frac18\cdot (5+\sqrt{5}) } \\ &=& \frac12\cdot (\sqrt{5}-1)\cdot \frac{\sqrt{ 5+\sqrt{5} } } { \sqrt{8} } \\ &=& \frac{1}{2\cdot \sqrt{8} } \cdot (\sqrt{5}-1)\cdot \sqrt{ 5+\sqrt{5} } \\ &=& \frac{1}{2\cdot \sqrt{8} } \cdot \sqrt{ (\sqrt{5}-1)^2\cdot (5+\sqrt{5}) } \\ &=& \frac{1}{2\cdot \sqrt{8} } \cdot \sqrt{ (5-2\sqrt{5}+1)\cdot (5+\sqrt{5}) } \\ &=& \frac{1}{2\cdot \sqrt{8} } \cdot \sqrt{ (6-2\sqrt{5})\cdot (5+\sqrt{5}) } \\ &=& \frac{1}{2\cdot \sqrt{8} } \cdot \sqrt{ 30+6\sqrt{5}-10\sqrt{5}-2\cdot 5 } \\ &=& \frac{1}{2\cdot \sqrt{8} } \cdot \sqrt{ 30+6\sqrt{5}-10\sqrt{5}-10 } \\ &=& \frac{1}{2\cdot \sqrt{8} } \cdot \sqrt{ 20-4\sqrt{5} } \\ &=& \frac{1}{2\cdot \sqrt{8} } \cdot \sqrt{ 4(5-\sqrt{5}) } \\ &=& \frac{\sqrt{4}}{2\cdot \sqrt{8} } \cdot \sqrt{ 5-\sqrt{5} } \\ &=& \frac{2}{2\cdot \sqrt{8} } \cdot \sqrt{ 5-\sqrt{5} } \\ &=& \frac{1}{ \sqrt{8} } \cdot \sqrt{ 5-\sqrt{5} } \\ &=& \frac{1}{ \sqrt{4\cdot 2} } \cdot \sqrt{ 5-\sqrt{5} } \\ &=& \frac{1}{ \sqrt{4}\cdot \sqrt{2} } \cdot \sqrt{ 5-\sqrt{5} } \\ &=& \frac{1}{ 2\cdot \sqrt{2} } \cdot \sqrt{ 5-\sqrt{5} } \\ &=& \frac{\sqrt{2}} {\sqrt{2}}\cdot \frac{1}{ 2\cdot \sqrt{2} } \cdot \sqrt{ 5-\sqrt{5} } \\ &=& \frac{\sqrt{2}}{ 2\cdot 2 } \cdot \sqrt{ 5-\sqrt{5} } \\\\ &\mathbf{=}& \mathbf{ \frac{\sqrt{2}}{ 4 } \cdot \sqrt{ 5-\sqrt{5} } } \\ &=& 0.58778525229 \\ \hline \end{array}\)

 

 

laugh

01.12.2016