Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26397 
+5

Find the x-coordinates of the points where the line y=5x-1 meets the curve y= 2x^3 + x^2 +1.

I keep solving but I can't seem to get anything right,

especially when I set these two next to each other.

 

 

Intersections:

yline=ycurve5x1=2x3+x2+1

 

2x3+x2+1=5x1|5x+12x3+x2+15x+1=02x3+x25x+2=0|:2x3+12x252x+1=0

 

We get the rational solutions, when we test all dividers from the absolut term 1:

We must test +1 or -1.

For +1 we get the first root x1: 13+1212521+1=1+1252+1=0

x1=1

 

We know that (xx1) is a divider of  x3+12x252x+1

(x3+12x252x+1):(x1)=(x2+1.5x1)

 

Because (x3+12x252x+1)=(x1)(x2+1.5x1)=0
we find the roots x2 and x3, if we set  x2+1.5x1=0

 

x2+1.5x1=0x=1.5±1.5241(1)2x=1.5±2.25+42x=1.5±6.252x=1.5±2.52x2=1.5+2.52x2=12x2=0.5x3=1.52.52x3=42x3=2

 

The x-coordinates of the intersection-points are: x1=1,x2=0.5, and x3=2

 

laugh

02.12.2016
 #4
avatar+26397 
0

 Simplify c**p with radicals

 

 

 

2[ 14(51) ]18(5+5)=24(51)18(5+5)=12(51)18(5+5)=12(51)5+58=128(51)5+5=128(51)2(5+5)=128(525+1)(5+5)=128(625)(5+5)=12830+6510525=12830+6510510=1282045=1284(55)=42855=22855=1855=14255=14255=12255=2212255=22255=2455=0.58778525229

 

 

laugh

01.12.2016