Loading [MathJax]/jax/output/SVG/fonts/TeX/fontdata.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26396 
+2

Let A, B, C, and D be points on a circle such that AB = 11 and CD = 19.
Point P is on segment AB with AP = 6, and Q is on segment CD with CQ = 7.
The line through P and Q intersects the circle at X and Y. If PQ = 27, find XY


Let AB =11Let AP =6Let PB = AB  AP =116=5Let CD =19Let CQ =7Let QD = CD  CQ =197=12Let PQ =27Let XP =xLet YQ =y

 

(1)AP PB =xPY |PY =y+ PQ 65=x(y+ PQ )30=x(y+27)x=30y+27(2)CQ QD =yQX |QX =x+ PQ 712=y(x+ PQ )84=y(x+27)|x=30y+2784=y(30y+27+27)84=y(30y+27+27)84=y(30+27(y+27)y+27)84=y(30+27y+272y+27)84=y(759+27yy+27)84(y+27)=y(759+27y)84y+8427=759y+27y227y2+675y8427=0|:27y2+25y84=0y1,2=25±2524(84)2y1,2=25±312|y>0!y=25+312y=3x=30y+27|y=3x=303+27x=3030x=1XY =x+ PQ +yXY =1+27+3XY =31

 

 

laugh

22.11.2016
 #1
avatar+26396 
0

(〖(-9)〗^3×〖(-12)〗^4×〖(10)〗^(-2))/(〖(15)〗^(-2)×〖18〗^2 )

 

(9)3(12)4102152182=(9)3(12)4102152182=(9)3(12)4152102182=(9)3124152102182=93124152102182=72920736225100324=72920736925425324=7292073694324=7298125694814=729256944=729256916=7291616916=729169=104976

 

laugh

18.11.2016