Let A, B, C, and D be points on a circle such that AB = 11 and CD = 19.
Point P is on segment AB with AP = 6, and Q is on segment CD with CQ = 7.
The line through P and Q intersects the circle at X and Y. If PQ = 27, find XY
Let AB =11Let AP =6Let PB = AB − AP =11−6=5Let CD =19Let CQ =7Let QD = CD − CQ =19−7=12Let PQ =27Let XP =xLet YQ =y
(1)AP ⋅PB =x⋅PY |PY =y+ PQ 6⋅5=x⋅(y+ PQ )30=x⋅(y+27)x=30y+27(2)CQ ⋅QD =y⋅QX |QX =x+ PQ 7⋅12=y⋅(x+ PQ )84=y⋅(x+27)|x=30y+2784=y⋅(30y+27+27)84=y⋅(30y+27+27)84=y⋅(30+27⋅(y+27)y+27)84=y⋅(30+27y+272y+27)84=y⋅(759+27yy+27)84⋅(y+27)=y⋅(759+27y)84y+84⋅27=759y+27y227y2+675y−84⋅27=0|:27y2+25y−84=0y1,2=−25±√252−4⋅(−84)2y1,2=−25±312|y>0!y=−25+312y=3x=30y+27|y=3x=303+27x=3030x=1XY =x+ PQ +yXY =1+27+3XY =31
