How do I solve this...
Using the expression due to Leibnitz, we have:
.
Fundamental theorem of calculus
g(s)=s∫8f(t) dt=s∫8(t−t4)5 dt=F(s)−F(8)g′(s)=ddss∫8f(t) dt=d F(s)ds−d F(8)ds|d F(8)ds=0, because F(8) is constant.=d F(s)ds=f(s)|f(t)=(t−t4)5g′(s)=(s−s4)5
The Formula is:
ddss∫af(t) dt=f(s)