Processing math: 100%
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26397 
0

How do you calculate the coefficients of a power series such as this one:
[ 1/4x^4 + 1/4x^5 + 1/4x^6]^10. Just the first 3 coefficients, with steps, would be great.
I would greatly appreciate any help. Thanks a million and have a great day.

 

[ 14x4+14x5+14x6 ]10=[ 14(x4+x5+x6) ]10=(14)10(x4+x5+x6)10=(1410)(x4+x5+x6)10=(11048576)(x4+x5+x6)10(a+b+c)n=nk=0ki=0(nk)(ki)ankbkici|(nk)+(ki)+(i)=n(x4+x5+x6)10=10k=0ki=0(10k)(ki)(x4)10k(x5)ki(x6)i|(10k)+(ki)+(i)=10

 

(k=0,i=0):(100)(00)(x4)10(x5)0(x6)0=x40(k=1,i=0):(101)(10)(x4)9(x5)1(x6)0=10x41(k=1,i=1):(101)(11)(x4)9(x5)0(x6)1=10x42(k=2,i=0):(102)(20)(x4)8(x5)2(x6)0=45x42(k=2,i=1):(102)(21)(x4)8(x5)1(x6)1=90x43(k=2,i=2):(102)(22)(x4)8(x5)0(x6)2=45x44(k=3,i=0):(103)(30)(x4)7(x5)3(x6)0=120x43(k=3,i=1):(103)(31)(x4)7(x5)2(x6)1=360x44(k=3,i=2):(103)(32)(x4)7(x5)1(x6)2=360x45(k=3,i=3):(103)(33)(x4)7(x5)0(x6)3=120x46

 

x4010x4110x4245x4290x4345x44120x43360x44360x45120x46sumx4010x4155x42210x43

 

[ 14x4+14x5+14x6 ]10=11048576x40+101048576x41+551048576x42+2101048576x43+6151048576x44+14521048576x45+28501048576x46+47401048576x47+67651048576x48+83501048576x49+89531048576x50+83501048576x51+67651048576x52+47401048576x53+28501048576x54+14521048576x55+6151048576x56+2101048576x57+551048576x58+101048576x59+11048576x60

.
17.05.2016
 #3
avatar+26397 
+11

Find the smallest positive integer that satisfies the system of congruences

 

a)

n congruency sign 2 (mod ll)

n congruency sign 3 (mod 17)

 

n2(mod11)n3(mod17)Let m=1117=187

Because 11 and 17 are relatively prim ( gcd(11,17) = 1! ) we can go on:

 

n=217[17φ(11)1(mod11)]=modulo inverse 17 mod 11=17101mod11=179mod11=2+311[11φ(17)1(mod17)]=modulo inverse 11 mod 17=11161mod17=1115mod17=14n=217[2]+311[14]n=68+462n=530n(modm)=530(mod187)=156n=156+k187kZnmin=156

 

b)

n congruency sign 1 (mod 7)

n congruency sign 7 (mod 13)

n congruency sign 13 (mod 20)

 

n1(mod7)n7(mod13)n13(mod20)Let m=71320=1820

 

Because 7 and 13 and 20 are relatively prim  we can go on:

 

n=11320[(1320)φ(7)1(mod7)]=modulo inverse (1320)mod7=(1320)61mod7=(1320)5mod7=(260(mod7))5mod7=(1)5mod7=1+7720[(720)φ(13)1(mod13)]=modulo inverse (720)mod13=(720)121mod13=(720)11mod13=(140(mod13))11mod13=(10)11mod13=4+13713[(713)φ(20)1(mod20)]=modulo inverse (713)mod20=(713)81mod20=(713)7mod20=(91(mod20))7mod20=(11)7mod20=11n=11320[1]+7720[4]+13713[11]n=260+3920+13013n=17193n(modm)=17193(mod1820)=813n=813+k1820kZnmin=813

 

In number theory, Euler's theorem (also known as the Fermat–Euler theorem or Euler's totient theorem)states that if n and a are coprime positive integers, then aφ(n)1(modn)

 

 

laugh

13.05.2016
 #4
avatar+26397 
+5

how many roots does the following have

p(x)=(x^2-5)(x^2+4)(x^2+10)(2x+6)

 

(x25)×(x2+4)×(x2+10)×(2x+6)=(x25)×(x2+4)×(x2+10)×(2(x+3))=(x25)binomial×(x2+4)×(x2+10)×(x+3)×2=(x5)(x+5)×(x2+4)×(x2+10)×(x+3)×2 i2=14i2=4  i2=110i2=10 =(x5)(x+5)×(x24i2)×(x210i2)×(x+3)×2=(x5)(x+5)×(x24i2)binomial×(x210i2)binomial×(x+3)×2=(x5)(x+5)×(x2i)(x+2i)×(x10i)(x+10i)×(x+3)×2=(x5)1. root: 5(x+5)2. root: 5×(x2i)3. root: 2i(x+2i)4. root: 2i×(x10i)5. root: 10i(x+10i)6. root: 10i×(x+3)7. root: 3×2

 

laugh

12.05.2016
 #2
avatar+26397 
+5

Solve for n:

1000= 50 x(1.00125)^n + 10 x(1.00125^n - 1/1.00125 - 1)

Please show your steps.

 

Let a = 1.00125

 

1000=50(1.00125)n+10(1.00125n11.001251)|a=1.001251000=50an+10(an1a1)|:10100=5an+(an1a1)100=5an+an1a1100=6an1a1|+1101=6an1a6an1a=101|+1a6an=101+1a|:6an=101+1a6|log10()log10(an)=log10(101+1a6)nlog10(a)=log10(101+1a6)|log10(a)n=log10(101+1a6)log10(a)|a=1.00125n=log10(101+11.001256)log10(1.00125)n=log10(101+0.998751560556)log10(1.00125)n=log10(101.9987515616)log10(1.00125)n=log10(16.9997919268)log10(1.00125)n=1.230443605750.00054252909n=2267.97718911

 

laugh

11.05.2016