Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26396 
0

If f(1)=3 and f(n)=-2f(n-1)+1, then f(5) is equal to?

 

f(1)=3f(2)=(2)1f(1)+1f(3)=(2)[f(2)]+1=(2)[(2)f(1)+1]+1=(2)2f(1)+(2)1+1f(4)=(2)[f(3)]+1=(2)[(2)2f(1)+(2)+1]+1=(2)3f(1)+(2)2+(2)1+1f(5)=(2)[f(4)]+1=(2)[(2)3f(1)+(2)2+(2)+1]+1=(2)4f(1)+(2)3+(2)2+(2)1+1f(5)=1638+42+1f(5)=488+42+1f(5)=43

 

f(n)=(2)n1f(1)+(2)n2+(2)n3+(2)n4++(2)1+1sum of a geometric sequence  r=2a1=1(2)n2+(2)n3+(2)n4++(2)1+1=1(2)n11(2)f(n)=(2)n1f(1)+1(2)n13f(n)=(2)n1f(1)+13(2)n13f(n)=(2)n1[f(1)13]+13

 

f(n)=(2)n1[f(1)13]+13

f(5)=(2)51[f(1)13]+13|f(1)=3f(5)=(2)4[313]+13f(5)=16[313]+13f(5)=16[83]+13f(5)=168+13f(5)=1293f(5)=43

 

laugh

29.04.2016
 #2
avatar+26396 
+10

If 4^x5^3x+1 = 10^2x+1, prove that x = log2 / log5

 

 

4x53x+1=102x+1|log10log10(4x53x+1)=log10(102x+1)|log10(102x+1)=2x+1log10(4x53x+1)=2x+1|log10(ab)=log10(a)+log10(b)log10(4x)+log10(53x+1)=2x+1|log10(ab)=blog10(a)xlog10(4)+(3x+1)log10(5)=2x+1xlog10(4)+3xlog10(5)+log10(5)=2x+1|2xxlog10(4)+3xlog10(5)2x+log10(5)=1|log10(5)xlog10(4)+3xlog10(5)2x=1log10(5)x[log10(4)+3log10(5)2]=1log10(5)|1=log10(10)x[log10(4)+3log10(5)2]=log10(10)log10(5)|log10(a)log10(b)=log10(ab)x[log10(4)+3log10(5)2]=log10(105)x[log10(4)+3log10(5)2]=log10(2)|2=log10(102)x[log10(4)+3log10(5)log10(102)]=log10(2)|blog10(a)=log10(ab)x[log10(4)+log10(53)log10(102)]=log10(2)x[log10(453102)]=log10(2)x[log10(500100)]=log10(2)x[log10(5)]=log10(2)|:log10(5)x=log10(2)log10(5)

.
27.04.2016
 #3
avatar+26396 
+6

 

nodes:27282930B(31)2223242526171819202110111213141516789456A(1)23

 

 entrys 1= one way 0=no way from node x to node y

 

 

 

Matrix A =

 

Marix A*A =

...

 

Matrix  A12=AAAAAAAAAAAA=

 

A12: Matrix element[A][B] =350 (12-station-way)

 

laugh

27.04.2016
 #2
avatar+26396 
+5

So, not entire sure how to go about doing this one using the substitution method, so i'd appreciate any help :\

 

e31dxx[1+ln(x)]

 

e31dxx[1+ln(x)]substitute  z=1+ln(x)dz=dxxdx=xdze31dxx[1+ln(x)]=e31xdzxz=e31dzz=[ ln(z) ]e31=[ ln( 1+ln(x) ) ]e31=ln( 1+ln(e3) )ln( 1+ln(1) )|ln(1)=0=ln( 1+ln(e3) )ln(1+0)=ln( 1+ln(e3) )ln(1)|ln(1)=0=ln( 1+ln(e3) )0=ln( 1+ln(e3) )=ln( 1+ln(e3) )|ln(e3)=3=ln(1+3)e31dxx[1+ln(x)]=ln(4)e31dxx[1+ln(x)]=1.38629436112

 

laugh

21.04.2016