heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26387 
0

If f(1)=3 and f(n)=-2f(n-1)+1, then f(5) is equal to?

 

\(\small{ \begin{array}{rclcl} f(1)&& &=&3\\ f(2)&& &=& (-2)^1\cdot f(1)+1 \\ f(3)&=& (-2)\cdot [ f(2)]+1 \\ &=& (-2)\cdot[ (-2)\cdot f(1)+1 ]+1 &=& (-2)^2\cdot f(1) + (-2)^1 + 1\\ f(4)&=& (-2)\cdot [ f(3)]+1 \\ &=& (-2)\cdot[ (-2)^2\cdot f(1) + (-2) + 1 ]+1 &=& (-2)^3\cdot f(1) + (-2)^2 + (-2)^1 + 1\\ f(5)&=& (-2)\cdot [ f(4)]+1 \\ &=& (-2)\cdot[ (-2)^3\cdot f(1) + (-2)^2 + (-2) + 1 ]+1 &=& (-2)^4\cdot f(1) + (-2)^3 + (-2)^2 + (-2)^1 + 1\\ f(5)&& &=&16\cdot 3 -8 + 4 -2 + 1\\ f(5)&& &=&48 -8 + 4 -2 + 1\\ f(5)&& &=&43\\ \end{array} } \)

 

\(\begin{array}{rclcl} f(n)&=& (-2)^{n-1}\cdot f(1) + (-2)^{n-2} + (-2)^{n-3} + (-2)^{n-4}+\dots + (-2)^1 + 1\\\\ && \text{sum of a geometric sequence } ~r=-2 \quad a_1 = 1\\ && (-2)^{n-2} + (-2)^{n-3} + (-2)^{n-4}+\dots + (-2)^1 + 1 = \frac{1-(-2)^{n-1}}{1-(-2)}\\\\ f(n)&=& (-2)^{n-1}\cdot f(1) + \frac{1-(-2)^{n-1}}{3}\\ f(n)&=& (-2)^{n-1}\cdot f(1) + \frac13 - \frac{(-2)^{n-1}}{3}\\ f(n)&=& (-2)^{n-1}\cdot \left[ f(1) -\frac13 \right] + \frac13 \\ \end{array} \)

 

\(\boxed{ \begin{array}{rcll} f(n)&=& (-2)^{n-1}\cdot \left[ f(1) -\frac13 \right] + \frac13 \end{array} } \)

\(\begin{array}{rcll} f(5)&=& (-2)^{5-1}\cdot \left[ f(1) -\frac13 \right] + \frac13 \qquad | \qquad f(1) = 3 \\ f(5)&=& (-2)^{4}\cdot \left[ 3 -\frac13 \right] + \frac13 \\ f(5)&=& 16\cdot \left[ 3 -\frac13 \right] + \frac13 \\ f(5)&=& 16\cdot \left[ \frac83 \right] + \frac13 \\ f(5)&=& \frac{16\cdot 8 + 1}{3} \\ f(5)&=& \frac{129}{3} \\ \mathbf{f(5)}&\mathbf{=}& \mathbf{43} \end{array} \)

 

laugh

29.04.2016
 #2
avatar+26387 
+10

If 4^x5^3x+1 = 10^2x+1, prove that x = log2 / log5

 

 

\(\small{ \begin{array}{rcll} 4^x\cdot 5^{3x+1} &=& 10^{2x+1} \quad &| \quad \log_{10} \\ \log_{10} ( 4^x\cdot 5^{3x+1} ) &=& \log_{10} ( 10^{2x+1} ) \quad &| \quad \log_{10} (10^{2x+1}) = 2x+1 \\ \log_{10} ( 4^x\cdot 5^{3x+1} ) &=& 2x+1 \quad &| \quad \log_{10} (a\cdot b) = \log_{10} (a) + \log_{10} (b)\\ \log_{10} ( 4^x ) + \log_{10} ( 5^{3x+1} ) &=& 2x+1 \quad &| \quad \log_{10} (a^b) = b\cdot \log_{10} (a) \\ x\cdot \log_{10} ( 4 ) + (3x+1) \cdot \log_{10} ( 5 ) &=& 2x+1 \\ x\cdot \log_{10} ( 4 ) + 3x\cdot \log_{10} ( 5 ) + \log_{10} ( 5 ) &=& 2x+1 \quad &| \quad -2x\\ x\cdot \log_{10} ( 4 ) + 3x\cdot \log_{10} ( 5 ) -2x + \log_{10}(5) &=& 1 \quad &| \quad - \log_{10}(5)\\ x\cdot \log_{10} ( 4 ) + 3x\cdot \log_{10} ( 5 ) -2x &=& 1 - \log_{10}(5)\\ x\cdot [ \log_{10}(4) + 3\cdot \log_{10}(5) -2 ] &=& 1 - \log_{10}(5) \quad &| \quad 1 = \log_{10}(10) \\ x\cdot [ \log_{10}(4) + 3\cdot \log_{10}(5) -2 ] &=& \log_{10}(10) - \log_{10}(5)\quad &| \quad \log_{10} (a) - \log_{10} (b) = \log_{10} ( \frac{a}{b} ) \\ x\cdot [ \log_{10}(4) + 3\cdot \log_{10}(5) -2 ] &=& \log_{10}(\frac{10}{5}) \\ x\cdot [ \log_{10}(4) + 3\cdot \log_{10}(5) -2 ] &=& \log_{10}(2) \quad &| \quad 2 = \log_{10}(10^2) \\ x\cdot [ \log_{10}(4) + 3\cdot \log_{10}(5) -\log_{10}(10^2) ] &=& \log_{10}(2) \quad &| \quad b\cdot \log_{10} (a) = \log_{10} (a^b)\\ x\cdot [ \log_{10}(4) + \log_{10}(5^3) -\log_{10}(10^2) ] &=& \log_{10}(2) \\ x\cdot [ \log_{10}(\frac{ 4\cdot 5^3 } {10^2} ) ] &=& \log_{10}(2) \\ x\cdot [ \log_{10}(\frac{ 500 } { 100 } ) ] &=& \log_{10}(2) \\ x\cdot [ \log_{10}(5) ] &=& \log_{10}(2) \quad &| \quad : \log_{10}(5) \\ \mathbf{ x } & \mathbf{ = } & \mathbf{ \frac{ \log_{10}(2) } { \log_{10}(5) } } \end{array} }\)

.
27.04.2016