We have 10 standard 6-sided dice, all different colors. In how many ways can we roll them to get a sum of 20?
We have 10 standard 6-sided dice, all different colors.
In how many ways can we roll them to get a sum of 20?
1.
The number of ways of partitioning 20 into exactly 10 distinct parts with the 6 numbers {1,2,3,4,5,6} we have:
30 partitions of 20 into ten distinct parts:
The 30 distinct partitions with the sum 20 are:
1.) {2,2,2,2,2,2,2,2,2,2}
2.) {1,2,2,2,2,2,2,2,2,3}
3.) {1,1,2,2,2,2,2,2,3,3}
4.) {1,1,2,2,2,2,2,2,2,4}
5.) {1,1,1,2,2,2,2,3,3,3}
6.) {1,1,1,2,2,2,2,2,3,4}
7.) {1,1,1,2,2,2,2,2,2,5}
8.) {1,1,1,1,2,2,3,3,3,3}
9.) {1,1,1,1,2,2,2,3,3,4}
10.) {1,1,1,1,2,2,2,2,4,4}
11.) {1,1,1,1,2,2,2,2,3,5}
12.) {1,1,1,1,2,2,2,2,2,6}
13.) {1,1,1,1,1,3,3,3,3,3}
14.) {1,1,1,1,1,2,3,3,3,4}
15.) {1,1,1,1,1,2,2,3,4,4}
16.) {1,1,1,1,1,2,2,3,3,5}
17.) {1,1,1,1,1,2,2,2,4,5}
18.) {1,1,1,1,1,2,2,2,3,6}
19.) {1,1,1,1,1,1,3,3,4,4}
20.) {1,1,1,1,1,1,3,3,3,5}
21.) {1,1,1,1,1,1,2,4,4,4}
22.) {1,1,1,1,1,1,2,3,4,5}
23.) {1,1,1,1,1,1,2,3,3,6}
24.) {1,1,1,1,1,1,2,2,5,5}
25.) {1,1,1,1,1,1,2,2,4,6}
26.) {1,1,1,1,1,1,1,4,4,5}
27.) {1,1,1,1,1,1,1,3,5,5}
28.) {1,1,1,1,1,1,1,3,4,6}
29.) {1,1,1,1,1,1,1,2,5,6}
30.) {1,1,1,1,1,1,1,1,6,6}
2.
In how many ways can we roll them to get a sum of 20?
We need the permutations of each partitions and the sum is the answer.
1.){2,2,2,2,2,2,2,2,2,2}10!10!=12.){1,2,2,2,2,2,2,2,2,3}10!1!8!1!=903.){1,1,2,2,2,2,2,2,3,3}10!2!6!2!=12604.){1,1,2,2,2,2,2,2,2,4}10!2!6!1!=3605.){1,1,1,2,2,2,2,3,3,3}10!3!4!3!=42006.){1,1,1,2,2,2,2,2,3,4}10!3!5!1!1!=50407.){1,1,1,2,2,2,2,2,2,5}10!3!6!1!=8408.){1,1,1,1,2,2,3,3,3,3}10!4!2!4!=31509.){1,1,1,1,2,2,2,3,3,4}10!4!3!2!1!=1260010.){1,1,1,1,2,2,2,2,4,4}10!4!4!2!=315011.){1,1,1,1,2,2,2,2,3,5}10!4!4!1!1!=630012.){1,1,1,1,2,2,2,2,2,6}10!4!5!1!=126013.){1,1,1,1,1,3,3,3,3,3}10!5!5!=25214.){1,1,1,1,1,2,3,3,3,4}10!5!1!3!1!=504015.){1,1,1,1,1,2,2,3,4,4}10!5!2!1!2!=756016.){1,1,1,1,1,2,2,3,3,5}10!5!2!2!1!=756017.){1,1,1,1,1,2,2,2,4,5}10!5!3!1!1!=504018.){1,1,1,1,1,2,2,2,3,6}10!5!3!1!1!=504019.){1,1,1,1,1,1,3,3,4,4}10!6!2!2!=126020.){1,1,1,1,1,1,3,3,3,5}10!6!3!1!=84021.){1,1,1,1,1,1,2,4,4,4}10!6!1!3!=84022.){1,1,1,1,1,1,2,3,4,5}10!6!1!1!1!1!=504023.){1,1,1,1,1,1,2,3,3,6}10!6!1!2!1!=252024.){1,1,1,1,1,1,2,2,5,5}10!6!2!2!=126025.){1,1,1,1,1,1,2,2,4,6}10!6!2!1!1!=252026.){1,1,1,1,1,1,1,4,4,5}10!7!2!1!=36027.){1,1,1,1,1,1,1,3,5,5}10!7!1!2!=36028.){1,1,1,1,1,1,1,3,4,6}10!7!1!1!1!=72029.){1,1,1,1,1,1,1,2,5,6}10!7!1!1!1!=72030.){1,1,1,1,1,1,1,1,6,6}10!8!2!=45sum=85228
3.
The probability is:
85228610=8522860466176=0.00140951530
The EXACT probability is:85,228 / 6^10=0.00140951529662......Your task is to figure out how to arrive at these numbers!!!.
We have 10 standard 6-sided dice, all different colors.
In how many ways can we roll them to get a sum of 20?
1.
The number of ways of partitioning 20 into exactly 10 distinct parts with the 6 numbers {1,2,3,4,5,6} we have:
30 partitions of 20 into ten distinct parts:
The 30 distinct partitions with the sum 20 are:
1.) {2,2,2,2,2,2,2,2,2,2}
2.) {1,2,2,2,2,2,2,2,2,3}
3.) {1,1,2,2,2,2,2,2,3,3}
4.) {1,1,2,2,2,2,2,2,2,4}
5.) {1,1,1,2,2,2,2,3,3,3}
6.) {1,1,1,2,2,2,2,2,3,4}
7.) {1,1,1,2,2,2,2,2,2,5}
8.) {1,1,1,1,2,2,3,3,3,3}
9.) {1,1,1,1,2,2,2,3,3,4}
10.) {1,1,1,1,2,2,2,2,4,4}
11.) {1,1,1,1,2,2,2,2,3,5}
12.) {1,1,1,1,2,2,2,2,2,6}
13.) {1,1,1,1,1,3,3,3,3,3}
14.) {1,1,1,1,1,2,3,3,3,4}
15.) {1,1,1,1,1,2,2,3,4,4}
16.) {1,1,1,1,1,2,2,3,3,5}
17.) {1,1,1,1,1,2,2,2,4,5}
18.) {1,1,1,1,1,2,2,2,3,6}
19.) {1,1,1,1,1,1,3,3,4,4}
20.) {1,1,1,1,1,1,3,3,3,5}
21.) {1,1,1,1,1,1,2,4,4,4}
22.) {1,1,1,1,1,1,2,3,4,5}
23.) {1,1,1,1,1,1,2,3,3,6}
24.) {1,1,1,1,1,1,2,2,5,5}
25.) {1,1,1,1,1,1,2,2,4,6}
26.) {1,1,1,1,1,1,1,4,4,5}
27.) {1,1,1,1,1,1,1,3,5,5}
28.) {1,1,1,1,1,1,1,3,4,6}
29.) {1,1,1,1,1,1,1,2,5,6}
30.) {1,1,1,1,1,1,1,1,6,6}
2.
In how many ways can we roll them to get a sum of 20?
We need the permutations of each partitions and the sum is the answer.
1.){2,2,2,2,2,2,2,2,2,2}10!10!=12.){1,2,2,2,2,2,2,2,2,3}10!1!8!1!=903.){1,1,2,2,2,2,2,2,3,3}10!2!6!2!=12604.){1,1,2,2,2,2,2,2,2,4}10!2!6!1!=3605.){1,1,1,2,2,2,2,3,3,3}10!3!4!3!=42006.){1,1,1,2,2,2,2,2,3,4}10!3!5!1!1!=50407.){1,1,1,2,2,2,2,2,2,5}10!3!6!1!=8408.){1,1,1,1,2,2,3,3,3,3}10!4!2!4!=31509.){1,1,1,1,2,2,2,3,3,4}10!4!3!2!1!=1260010.){1,1,1,1,2,2,2,2,4,4}10!4!4!2!=315011.){1,1,1,1,2,2,2,2,3,5}10!4!4!1!1!=630012.){1,1,1,1,2,2,2,2,2,6}10!4!5!1!=126013.){1,1,1,1,1,3,3,3,3,3}10!5!5!=25214.){1,1,1,1,1,2,3,3,3,4}10!5!1!3!1!=504015.){1,1,1,1,1,2,2,3,4,4}10!5!2!1!2!=756016.){1,1,1,1,1,2,2,3,3,5}10!5!2!2!1!=756017.){1,1,1,1,1,2,2,2,4,5}10!5!3!1!1!=504018.){1,1,1,1,1,2,2,2,3,6}10!5!3!1!1!=504019.){1,1,1,1,1,1,3,3,4,4}10!6!2!2!=126020.){1,1,1,1,1,1,3,3,3,5}10!6!3!1!=84021.){1,1,1,1,1,1,2,4,4,4}10!6!1!3!=84022.){1,1,1,1,1,1,2,3,4,5}10!6!1!1!1!1!=504023.){1,1,1,1,1,1,2,3,3,6}10!6!1!2!1!=252024.){1,1,1,1,1,1,2,2,5,5}10!6!2!2!=126025.){1,1,1,1,1,1,2,2,4,6}10!6!2!1!1!=252026.){1,1,1,1,1,1,1,4,4,5}10!7!2!1!=36027.){1,1,1,1,1,1,1,3,5,5}10!7!1!2!=36028.){1,1,1,1,1,1,1,3,4,6}10!7!1!1!1!=72029.){1,1,1,1,1,1,1,2,5,6}10!7!1!1!1!=72030.){1,1,1,1,1,1,1,1,6,6}10!8!2!=45sum=85228
3.
The probability is:
85228610=8522860466176=0.00140951530
One question, heureka.......did you you find the number of partitions by "trial and error" or did you use some algorithm for this???
One question, heureka.......did you you find the number of partitions by "trial and error" or did you use some algorithm for this???
Hallo CPhill,
i did it by computing program. I wrote a algorithm for this in c++.
Here is the counting for all sums from 1 to 60:
1 = 0
2 = 0
3 = 0
4 = 0
5 = 0
6 = 0
7 = 0
8 = 0
9 = 0
10 = 1
11 = 10
12 = 55
13 = 220
14 = 715
15 = 2002
16 = 4995
17 = 11340
18 = 23760
19 = 46420
20 = 85228
21 = 147940
22 = 243925
23 = 383470
24 = 576565
25 = 831204
26 = 1151370
27 = 1535040
28 = 1972630
29 = 2446300
30 = 2930455
31 = 3393610
32 = 3801535
33 = 4121260
34 = 4325310
35 = 4395456
36 = 4325310
37 = 4121260
38 = 3801535
39 = 3393610
40 = 2930455
41 = 2446300
42 = 1972630
43 = 1535040
44 = 1151370
45 = 831204
46 = 576565
47 = 383470
48 = 243925
49 = 147940
50 = 85228
51 = 46420
52 = 23760
53 = 11340
54 = 4995
55 = 2002
56 = 715
57 = 220
58 = 55
59 = 10
60 = 1
Here is an alternative solution to this problem:
Expand the generating function
(1/6x+1/6x^2+1/6x^3 + 1/6x^4+1/6x^5+1/6x^6)^10
(by using Wolfram Alpha, for example)
and find the x^20 term, which is 21,307/15,116,544=85,228/60,466,176 in this case. Each coefficient gives the probability of getting a sum of that power of x.
EXPANDED FORM:
x^60/60466176+(5 x^59)/30233088+(55 x^58)/60466176+(55 x^57)/15116544+(715 x^56)/60466176+(1001 x^55)/30233088+(185 x^54)/2239488+(35 x^53)/186624+(55 x^52)/139968+(11605 x^51)/15116544+(21307 x^50)/15116544+(36985 x^49)/15116544+(243925 x^48)/60466176+(191735 x^47)/30233088+(576565 x^46)/60466176+(23089 x^45)/1679616+(63965 x^44)/3359232+(2665 x^43)/104976+(986315 x^42)/30233088+(611575 x^41)/15116544+(2930455 x^40)/60466176+(1696805 x^39)/30233088+(3801535 x^38)/60466176+(1030315 x^37)/15116544+(240295 x^36)/3359232+(7631 x^35)/104976+(240295 x^34)/3359232+(1030315 x^33)/15116544+(3801535 x^32)/60466176+(1696805 x^31)/30233088+(2930455 x^30)/60466176+(611575 x^29)/15116544+(986315 x^28)/30233088+(2665 x^27)/104976+(63965 x^26)/3359232+(23089 x^25)/1679616+(576565 x^24)/60466176+(191735 x^23)/30233088+(243925 x^22)/60466176+(36985 x^21)/15116544+(21307 x^20)/15116544+(11605 x^19)/15116544+(55 x^18)/139968+(35 x^17)/186624+(185 x^16)/2239488+(1001 x^15)/30233088+(715 x^14)/60466176+(55 x^13)/15116544+(55 x^12)/60466176+(5 x^11)/30233088+x^10/60466176