heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26387 
0

how do I solve 2/(sqrt(4sqrt(2)+6))+2/(sqrt(6-4*sqrt(2)) , without calculator, it's been an hour at least..

 

\(\begin{array}{rcll} \frac{2} {\sqrt{ 6 + 4\cdot \sqrt{2}} } + \frac{2} { \sqrt{6-4 \cdot \sqrt{2} } } &=& 2\cdot \left( \frac{1} {\sqrt{ 6 + 4\cdot \sqrt{2}} } + \frac{1} { \sqrt{6-4 \cdot \sqrt{2} } } \right) \\\\ &=& 2\cdot \left( \frac{ \sqrt{ 6 - 4 \cdot \sqrt{2} } + \sqrt{6+4 \cdot \sqrt{2} } } { \sqrt{ 6 + 4 \cdot \sqrt{2} } \cdot \sqrt{ 6 - 4 \cdot \sqrt{2} } } \right) \\\\ &=& 2\cdot \left( \frac{ \sqrt{ 6 - 4 \cdot \sqrt{2} } + \sqrt{6+4 \cdot \sqrt{2} } } { \sqrt{ ( 6 + 4 \cdot \sqrt{2} ) \cdot ( 6 - 4 \cdot \sqrt{2} ) } } \right) \\\\ &=& 2\cdot \left( \frac{ \sqrt{ 6 - 4 \cdot \sqrt{2} } + \sqrt{6+4 \cdot \sqrt{2} } } { \sqrt{ 36 - 16 \cdot 2 } } \right) \\\\ &=& 2\cdot \left( \frac{ \sqrt{ 6 - 4 \cdot \sqrt{2} } + \sqrt{6+4 \cdot \sqrt{2} } } { \sqrt{ 4 } } \right) \\\\ &=& 2\cdot \left( \frac{ \sqrt{ 6 - 4 \cdot \sqrt{2} } + \sqrt{6+4 \cdot \sqrt{2} } } { 2 } \right) \\\\ &=& \sqrt{ 6 - 4 \cdot \sqrt{2} } + \sqrt{6+4 \cdot \sqrt{2} } \\\\ \end{array}\)

\(\begin{array}{rcll} \frac{2} {\sqrt{ 6 + 4\cdot \sqrt{2}} } + \frac{2} { \sqrt{6-4 \cdot \sqrt{2} } } &=& \sqrt{ 6 - 4 \cdot \sqrt{2} } + \sqrt{6+4 \cdot \sqrt{2} } \qquad | \qquad \sqrt{()^2} \\\\ &=& \sqrt{ \left( \sqrt{ 6 - 4 \cdot \sqrt{2} } + \sqrt{6+4 \cdot \sqrt{2} } \right)^2 } \\\\ &=& \sqrt{ (6-4 \cdot \sqrt{2}) + 2\cdot \sqrt{ 6 - 4 \cdot \sqrt{2} }\cdot \sqrt{6+4 \cdot \sqrt{2} } + (6+4 \cdot \sqrt{2}) } \\\\ &=& \sqrt{ 6 + 2\cdot \sqrt{ 6 - 4 \cdot \sqrt{2} }\cdot \sqrt{6+4 \cdot \sqrt{2} } + 6 } \\\\ &=& \sqrt{ 12 + 2\cdot \sqrt{ 6 - 4 \cdot \sqrt{2} }\cdot \sqrt{6+4 \cdot \sqrt{2} } } \\\\ &=& \sqrt{ 12 + 2\cdot \sqrt{ (6 - 4 \cdot \sqrt{2}) \cdot (6+4 \cdot \sqrt{2}) } } \\\\ &=& \sqrt{ 12 + 2\cdot \sqrt{ 36 - 16 \cdot 2 } } \\\\ &=& \sqrt{ 12 + 2\cdot \sqrt{ 4 } } \\\\ &=& \sqrt{ 12 + 2\cdot 2 } \\\\ &=& \sqrt{ 12 + 4 } \\\\ &=& \sqrt{ 16 } \\\\ \mathbf{ \frac{2} {\sqrt{ 6 + 4\cdot \sqrt{2}} } + \frac{2} { \sqrt{6-4 \cdot \sqrt{2} } } } &\mathbf{=}& \mathbf{4} \end{array}\)

 

laugh

21.04.2016