Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
688
3
avatar

remainder of 2^2011/13

 Apr 10, 2016
 #1
avatar+426 
0
2xRemainder of 2x
x = 12
x = 24
x = 38
x = 43
x = 56
x = 612
x = 711
2xRemainder of 2x
x = 89
x = 95

 

Using the Math Olympiad Method, we can't find out a pattern.

Using a graphing calculator, it is very difficult.

 

Therefore, we can't solve it easily.

 Apr 10, 2016
 #2
avatar
+5

MWizard2k04:

This is a primitive problem for any good calculator with a "mod" funtion on it, such as HP calculator that comes with "Windows": remainder of 2^2011/13=2^2011 mod 13=11

 Apr 10, 2016
 #3
avatar+26396 
0

remainder of 2^2011/13

 

22011(mod13)= ?

 

1.gcd(13,2)=1|13 and 2 are relatively prim 2.13 is a prim number 3.ϕ() is Euler's totient function, Euler's phi function ϕ(p)=p1p is a prim numberϕ(13)=124.2ϕ(13)1(mod13)2121(mod13) Let ϕ(n) denote the totient function. Then aϕ(n)1(modn) for all a relatively prime to n.

 

5.2011=12167+722011(mod13)=212167+7(mod13)=(212)16727(mod13)(1)16727(mod13)127(mod13)27(mod13)128(mod13)11(mod13)

 

The remainder of 2201113 is 11

 

laugh

 Apr 11, 2016

3 Online Users

avatar