tan(45°) = 1 so tan(45°) + 1/tan(45°) = 1 + 1 → 2
θ = 45° (or θ = pi/4 radians)
.
tan^2(x) +1/tan^2(x)=2
use trig identities to solve.since
tan^2(x) =sec^2(x) -1
then write
sec^2(x)-1 +1/(sec^2(x)-1)=2
so a + 1/a = 2 where a = sec^2(x)-1
solve quadratic in a
a^2-2a+1=0 gives (a-1)^2=0,so a=1 giving sec^2(x)=2
sec(x)=plus or minus root2
cos(x) = 1/(plus or minus root 2)
x= 45 deg, 315 deg, etc
tan2θ + 1/tan2θ=2 then value of θ=?
tan2(ϕ)+1tan2(ϕ)=2|⋅tan2(ϕ)tan4(ϕ)+1=2⋅tan2(ϕ)|−2⋅tan2(ϕ)tan4(ϕ)−2⋅tan2(ϕ)+1=0|binomial(tan2(ϕ)−1)2=0|√tan2(ϕ)−1=0|+1tan2(ϕ)=1|±√tan(ϕ)=±√1tan(ϕ)=±1|arctan()ϕ=arctan(±1)±k⋅π|k=0,1,2,⋯ϕ=±arctan(1)±k⋅π|arctan(1)=π4ϕ=±π4±k⋅πϕ1=π4±k⋅πϕ2=−π4±k⋅πϕ=⋯−34π,−π4,π4,34π,⋯