Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
900
3
avatar

tan2θ + 1/tan2θ=2 then value of θ=?

 Apr 11, 2016
 #1
avatar+33654 
0

tan(45°) = 1   so   tan(45°) + 1/tan(45°) = 1 + 1 → 2

 

θ = 45°   (or θ = pi/4  radians)

.

 Apr 11, 2016
 #2
avatar
0

tan^2(x) +1/tan^2(x)=2

use trig identities to solve.since

tan^2(x) =sec^2(x) -1

then write

sec^2(x)-1 +1/(sec^2(x)-1)=2

so     a + 1/a = 2     where a = sec^2(x)-1

solve quadratic in a

a^2-2a+1=0   gives (a-1)^2=0,so a=1  giving sec^2(x)=2

sec(x)=plus or minus root2

cos(x) = 1/(plus or minus root 2)

x= 45 deg, 315 deg, etc

 Apr 11, 2016
 #3
avatar+26396 
0

tan2θ + 1/tan2θ=2 then value of θ=?

 

tan2(ϕ)+1tan2(ϕ)=2|tan2(ϕ)tan4(ϕ)+1=2tan2(ϕ)|2tan2(ϕ)tan4(ϕ)2tan2(ϕ)+1=0|binomial(tan2(ϕ)1)2=0|tan2(ϕ)1=0|+1tan2(ϕ)=1|±tan(ϕ)=±1tan(ϕ)=±1|arctan()ϕ=arctan(±1)±kπ|k=0,1,2,ϕ=±arctan(1)±kπ|arctan(1)=π4ϕ=±π4±kπϕ1=π4±kπϕ2=π4±kπϕ=34π,π4,π4,34π,

 

laugh

 Apr 11, 2016

0 Online Users