heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #3
avatar+26387 
+5

Question 1:

 

If  \(y+4=(x-2)^2\)  and  \(x+4=(y-2)^2\)

with "x" not equal to "y",

what is the value of  \(x^2+y^2?\)

 

\(\begin{array}{lrcll} & y+4 &=& (x-2)^2 \\ & y +4 &=& x^2-4x+4\\ & y &=& x^2-4x\\ (1) & x^2 - 4x -y &=& 0 \\ \hline \\ & x+4 &=& (y-2)^2 \\ & x +4 &=& y^2-4y+4\\ & x &=& y^2-4y\\ (2) & y^2 - 4y -x &=& 0 \\ & y &=& \frac{4 \pm\sqrt{16-4(-x)}}{2} \\ & y &=& \frac{4 \pm\sqrt{16+4x}}{2} \\ & y &=& \frac{4 \pm \sqrt{4\cdot(4+x)}}{2} \\ & y &=& \frac{4 \pm 2\sqrt{4+x}}{2} \\ & y &=& 2 \pm \sqrt{4+x} \qquad \text{or} \qquad x = 2 \pm \sqrt{4+y}\\ \hline \\ & y &=& x^2-4x\\ & 2 \pm \sqrt{4+x}&=& x^2-4x\\ & \pm \sqrt{4+x}&=& x^2-4x-2 \qquad | \qquad \text{square both sides}\\ & 4+x&=& (x^2-4x-2)\cdot(x^2-4x-2)\\ & \dots \\ & x^4 -8x^3+12x^2+15x &=& 0 \\ \end{array}\)

 

\(\begin{array}{rcll} x(x^3 -8x^2+12x+15) &=& 0 \\ x_1 = 0 \\\\ x^3 -8x^2+12x+15 &=& 0 \\ x_2 = 5\\\\ (x-5)\cdot( x^2-3x-3) &=& 0 \\ x^2-3x-3 &=& 0 \\ x_3 &=& \frac{ 3+\sqrt{21} }{2} \qquad \text{ or } \qquad x_4 = \frac{ 3-\sqrt{21} }{2} \end{array}\)

 

\(\begin{array}{rcll} \text{ symmetry } x \text{ and } y :\\ y_1 &=& 0 \\ y_2 &=& 5 \\ y_3 &=& \frac{ 3+\sqrt{21} }{2} \\ y_4 &=& \frac{ 3-\sqrt{21} }{2} \end{array}\)

 

\(\begin{array}{rcll} x \ne y : \\ x_1 &=& \frac{ 3+\sqrt{21} }{2} \qquad y_1 &=& \frac{ 3-\sqrt{21} }{2} \\ x_2 &=& \frac{ 3-\sqrt{21} }{2} \qquad y_2 &=& \frac{ 3+\sqrt{21} }{2} \\\\ x^2+y^2 &=& 5\cdot(x+y) \\ &=& 5\cdot (x_1+y_1)\\ &=& 5\cdot (x_2+y_2) \\ &=& 15 \end{array}\)

 

laugh

08.03.2016
 #2
avatar+26387 
+5

How do I rearrange the formula BHN = (2*P) / [ (pi*D)(D - sqrt(D2-d2)) ] to make 'd' the subject?
Thank you

 

\(\begin{array}{rcll} \text{BHN} &=& \frac{2\cdot P} { \pi \cdot D \cdot (D - \sqrt{D^2-d^2}) } \qquad & | \qquad \cdot (D - \sqrt{D^2-d^2})\\ \text{BHN}\cdot (D - \sqrt{D^2-d^2}) &=& \frac{2\cdot P} { \pi \cdot D } \qquad & | \qquad : \text{BHN}\\ D - \sqrt{D^2-d^2} &=& \frac{2\cdot P} { \pi \cdot D \cdot \text{BHN}} \qquad & | \qquad \cdot(-1)\\ -D + \sqrt{D^2-d^2} &=& -\frac{2\cdot P} { \pi \cdot D \cdot \text{BHN}} \qquad & | \qquad +D\\ \sqrt{D^2-d^2} &=& D-\frac{2\cdot P} { \pi \cdot D \cdot \text{BHN}} \qquad & | \qquad \text{square both sides}\\ D^2-d^2 &=& \left( D-\frac{2\cdot P} { \pi \cdot D \cdot \text{BHN}} \right)^2\\ D^2-d^2 &=& D^2 -2\cdot D \left( \frac{2\cdot P} { \pi \cdot D \cdot \text{BHN}} \right) + \left( \frac{2\cdot P} { \pi \cdot D \cdot \text{BHN}} \right)^2\\ -d^2 &=& -2\cdot D \left( \frac{2\cdot P} { \pi \cdot D \cdot \text{BHN}} \right) + \left( \frac{2\cdot P} { \pi \cdot D \cdot \text{BHN}} \right)^2 \qquad & | \qquad \cdot(-1)\\ d^2 &=& 2\cdot D \left( \frac{2\cdot P} { \pi \cdot D \cdot \text{BHN}} \right) - \left( \frac{2\cdot P} { \pi \cdot D \cdot \text{BHN}} \right)^2\\ d^2 &=& \frac{4\cdot D \cdot P} { \pi \cdot D \cdot \text{BHN} } - \frac{4\cdot P^2} { \left( \pi \cdot D \cdot \text{BHN}\right)^2 } \\ d^2 &=& \frac{4\cdot D \cdot P} { \pi \cdot D \cdot \text{BHN} } \cdot \frac{\pi \cdot D \cdot \text{BHN}}{\pi \cdot D \cdot \text{BHN}} - \frac{4\cdot P^2} { \left( \pi \cdot D \cdot \text{BHN}\right)^2 } \\ d^2 &=& \frac{4\cdot D \cdot P\cdot \pi \cdot D \cdot \text{BHN}} { \left( \pi \cdot D \cdot \text{BHN}\right)^2 } - \frac{4\cdot P^2} { \left( \pi \cdot D \cdot \text{BHN}\right)^2 } \\ d^2 &=& \frac{4}{\left( \pi \cdot D \cdot \text{BHN}\right)^2} \cdot \left( D^2 \cdot P\cdot \pi \cdot \text{BHN} - P^2 \right) \qquad & | \qquad \pm\sqrt{}\\ d &=& \pm \frac{2}{ \pi \cdot D \cdot \text{BHN} } \cdot \sqrt{ D^2 \cdot P\cdot \pi \cdot \text{BHN} - P^2 } \\ d &=& \pm \frac{2\cdot \sqrt{ D^2 \cdot P\cdot \pi \cdot \text{BHN} - P^2 } }{ \pi \cdot D \cdot \text{BHN} } \\\\ \mathbf{d_1 } &\mathbf{=}& \mathbf{ + \frac{2\cdot \sqrt{ D^2 \cdot P\cdot \pi \cdot \text{BHN} - P^2 } }{ \pi \cdot D \cdot \text{BHN} } }\\\\ \mathbf{d_2 } &\mathbf{=}& \mathbf{ - \frac{2\cdot \sqrt{ D^2 \cdot P\cdot \pi \cdot \text{BHN} - P^2 } }{ \pi \cdot D \cdot \text{BHN} } } \end{array}\)

 

laugh

08.03.2016