How do I rearrange the formula BHN = (2*P) / [ (pi*D)(D - sqrt(D2-d2)) ] to make 'd' the subject?
Thank you
Note: Wolfram/Alpha gives these 2 results: I have changed "BHN" on the LHS to just "B"
d = -(2 sqrt(pi B D^2 P-P^2))/(pi B D) and,
d = (2 sqrt(pi B D^2 P-P^2))/(pi B D)
How do I rearrange the formula BHN = (2*P) / [ (pi*D)(D - sqrt(D2-d2)) ] to make 'd' the subject?
Thank you
BHN=2⋅Pπ⋅D⋅(D−√D2−d2)|⋅(D−√D2−d2)BHN⋅(D−√D2−d2)=2⋅Pπ⋅D|:BHND−√D2−d2=2⋅Pπ⋅D⋅BHN|⋅(−1)−D+√D2−d2=−2⋅Pπ⋅D⋅BHN|+D√D2−d2=D−2⋅Pπ⋅D⋅BHN|square both sidesD2−d2=(D−2⋅Pπ⋅D⋅BHN)2D2−d2=D2−2⋅D(2⋅Pπ⋅D⋅BHN)+(2⋅Pπ⋅D⋅BHN)2−d2=−2⋅D(2⋅Pπ⋅D⋅BHN)+(2⋅Pπ⋅D⋅BHN)2|⋅(−1)d2=2⋅D(2⋅Pπ⋅D⋅BHN)−(2⋅Pπ⋅D⋅BHN)2d2=4⋅D⋅Pπ⋅D⋅BHN−4⋅P2(π⋅D⋅BHN)2d2=4⋅D⋅Pπ⋅D⋅BHN⋅π⋅D⋅BHNπ⋅D⋅BHN−4⋅P2(π⋅D⋅BHN)2d2=4⋅D⋅P⋅π⋅D⋅BHN(π⋅D⋅BHN)2−4⋅P2(π⋅D⋅BHN)2d2=4(π⋅D⋅BHN)2⋅(D2⋅P⋅π⋅BHN−P2)|±√d=±2π⋅D⋅BHN⋅√D2⋅P⋅π⋅BHN−P2d=±2⋅√D2⋅P⋅π⋅BHN−P2π⋅D⋅BHNd1=+2⋅√D2⋅P⋅π⋅BHN−P2π⋅D⋅BHNd2=−2⋅√D2⋅P⋅π⋅BHN−P2π⋅D⋅BHN