Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26396 
+10

(sin x * tan x) / (1 - cos x) - 1 = sec x
Show that left equals right.

 

sin(x)tan(x)1cos(x)1?=sec(x)|sec(x)=1cos(x)?=1cos(x)sin(x)tan(x)1cos(x)1?=1cos(x)|tan(x)=sin(x)cos(x)sin(x)sin(x)cos(x)1cos(x)1?=1cos(x)sin2(x)cos(x)[1cos(x)]1?=1cos(x)sin2(x)cos(x)[1cos(x)]cos(x)[1cos(x)]?=1cos(x)sin2(x)cos(x)+cos2(x)cos(x)[1cos(x)]?=1cos(x)|sin(x)2+cos2(x)=1[1cos(x)]cos(x)[1cos(x)]?=1cos(x)1cos(x)=1cos(x)

 

laugh

01.03.2016
 #1
avatar+26396 
+5

(1 + sin x)/(cos x) + (cos x)/(1 + sin x) = (4 sin x)/(sin 2x) {nl} Show that left equals right, and sin 2x is a double-angle identity. I despise Trig, haha.

 

1+sin(x)cos(x)+cos(x)1+sin(x)?=4sin(x)sin(2x)|sin(2x)=2sin(x)cos(x)?=4sin(x)2sin(x)cos(x)?=2cos(x)1+sin(x)cos(x)+cos(x)1+sin(x)?=2cos(x)[1+sin(x)]2+[cos2(x)]cos(x)[1+sin(x)]?=2cos(x)1+2sin(x)+sin(x)2+cos2(x)cos(x)[1+sin(x)]?=2cos(x)|sin(x)2+cos2(x)=11+2sin(x)+1cos(x)[1+sin(x)]?=2cos(x)2+2sin(x)cos(x)[1+sin(x)]?=2cos(x)2[1+sin(x)]cos(x)[1+sin(x)]?=2cos(x)2cos(x)=2cos(x)

 

laugh

01.03.2016