Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26396 
0

Two spherical objects have equal masses and experience a gravitational force of 25 N towards one another. Their centers are 36cm apart. Determine each of their masses.

 

Newton:

 

F=Gm1m2r2

 

where:

   Fis the force between the massesGis the gravitational constant (6.6741011 N(mkg)2)m1is the first massm2is the second massris the distance between the centers of the masses

 

m1=m2=mF=Gmmr2F=Gm2r2|r2Fr2=Gm2|:GFGr2=m2m2=r2FG|m=rFG

F=25 NG=6.6741011 N(mkg)2r=0.36 mm=rFGm=0.36 m25 N6.6741011 N(mkg)2m=0.36 m256.6741011(mkg)2m=0.36 m5kgm16.6741011m=1.816.6741011 kgm=1.810116.674 kgm=1.81010106.674 kgm=1.8105106.674 kgm=1.81051.22407181693 kgm=2.20332927048105 kgm=2.20332927048105 kg

 

Their masses are each 2.20332927048105 kg

 

laugh

26.02.2016
 #2
avatar+26396 
+35

I need a function that goes through these points:

(1, 1)

(2, 1.6)

(3, 2.4)

(4, 3)

(5, 4)

(6, 5)

(7, 6.4)

(8, 8)

 

Function:  y=ax7+bx6+cx5+dx4+ex3+fx2+gx+h

 

We have eight equations:

1=a(1)7+b(1)6+c(1)5+d(1)4+e(1)3+f(1)2+g(1)+h1.6=a(2)7+b(2)6+c(2)5+d(2)4+e(2)3+f(2)2+g(2)+h2.4=a(3)7+b(3)6+c(3)5+d(3)4+e(3)3+f(3)2+g(3)+h3=a(4)7+b(4)6+c(4)5+d(4)4+e(4)3+f(4)2+g(4)+h4=a(5)7+b(5)6+c(5)5+d(5)4+e(5)3+f(5)2+g(5)+h5=a(6)7+b(6)6+c(6)5+d(6)4+e(6)3+f(6)2+g(6)+h6.4=a(7)7+b(7)6+c(7)5+d(7)4+e(7)3+f(7)2+g(7)+h8=a(8)7+b(8)6+c(8)5+d(8)4+e(8)3+f(8)2+g(8)+h

 

We need the inverse Matrix of:

(  1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,   {nl}    128.000000, 64.000000, 32.000000, 16.000000, 8.000000, 4.000000, 2.000000, 1.000000,   {nl}    2187.000000, 729.000000, 243.000000, 81.000000, 27.000000, 9.000000, 3.000000, 1.000000,   {nl}    16384.000000, 4096.000000, 1024.000000, 256.000000, 64.000000, 16.000000, 4.000000, 1.000000,   {nl}    78125.000000, 15625.000000, 3125.000000, 625.000000, 125.000000, 25.000000, 5.000000, 1.000000,   {nl}    279936.000000, 46656.000000, 7776.000000, 1296.000000, 216.000000, 36.000000, 6.000000, 1.000000,   {nl}    823543.000000, 117649.000000, 16807.000000, 2401.000000, 343.000000, 49.000000, 7.000000, 1.000000,   {nl}    2097152.000000, 262144.000000, 32768.000000, 4096.000000, 512.000000, 64.000000, 8.000000, 1.000000 )

 

The inverse Matrix is:

( -0.000198, 0.001389, -0.004167, 0.006944, -0.006944, 0.004167, -0.001389, 0.000198,

0.006944, -0.047222, 0.137500, -0.222222, 0.215278, -0.125000, 0.040278, -0.005556,

-0.101389, 0.663889, -1.862500, 2.902778, -2.715278, 1.525000, -0.476389, 0.063889,

0.798611, -4.972222, 13.312500, -19.888889, 17.923611, -9.750000, 2.965278, -0.388889,

-3.655556, 21.234722, -53.600000, 76.340278, -66.277778, 35.037500, -10.422222, 1.343056,

9.694444, -50.980556, 119.550000, -161.888889, 135.861111, -70.125000, 20.494444, -2.605556,

-13.742857, 62.100000, -133.533333, 172.750000, -141.000000, 71.433333, -20.600000, 2.592857,

8.000000, -28.000000, 56.000000, -70.000000, 56.000000, -28.000000, 8.000000, -1.000000 )

 

The coefficients (a,b,c,d,e,f,g,h) are:

a = -0.0013888889 {nl} b = 0.0441666667 {nl} c = -0.5747222222 {nl} d = 3.9375000000 {nl} e = -15.1805555556 {nl} f = 32.5183333333 {nl} g = -34.5433333333 {nl} h = 14.8000000000

 

The function is:

 

y=0.0013888889x7+0.0441666667x60.5747222222x5++3.9375x415.1805555556x3+32.5183333333x234.5433333333x+14.8

 

or

y=1720x7+531200x620693600x5+6316x4109372x3+32.518¯3x234.54¯3x+745

 

 

 

laugh

26.02.2016