heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26387 
0

Two spherical objects have equal masses and experience a gravitational force of 25 N towards one another. Their centers are 36cm apart. Determine each of their masses.

 

Newton:

 

\(\begin{array}{rcll} F &=& G \cdot \frac{m_1\cdot m_2}{r^2} \\ \end{array}\)

 

where:

   \(\begin{array}{rl} F & \text{is the force between the masses} \\ G & \text{is the gravitational constant } (6.674\cdot 10^{-11}\ N\cdot (\frac{m}{kg})^2) \\ m_1 & \text{is the first mass} \\ m_2 & \text{is the second mass} \\ r & \text{is the distance between the centers of the masses} \\ \end{array} \)

 

\(\begin{array}{rcll} m_1 = m_2 &=& m \\ F &=& G \cdot \frac{m\cdot m}{r^2} \\ F &=& G \cdot \frac{m^2}{r^2} \qquad & | \qquad \cdot r^2\\ F \cdot r^2&=& G \cdot m^2 \qquad & | \qquad :G\\ \frac{F}{G} \cdot r^2&=& m^2 \\ m^2 &=& r^2 \cdot \frac{F}{G} \qquad & | \qquad \sqrt{}\\ \mathbf{m} &\mathbf{=}& \mathbf{r \cdot \sqrt{\frac{F}{G}} }\\\\ \end{array}\)

\(\begin{array}{rcll} F &=& 25\ N \\ G &=& 6.674\cdot 10^{-11}\ N\cdot (\frac{m}{kg})^2 \\ r &=& 0.36\ m\\\\ m &=& r \cdot \sqrt{\frac{F}{G}} \\ m &=& 0.36\ m \cdot \sqrt{\frac{25\ \not{N} }{6.674\cdot 10^{-11}\ \not{N}\cdot (\frac{m}{kg})^2}} \\ m &=& 0.36\ m \cdot \sqrt{\frac{25}{6.674\cdot 10^{-11}\cdot (\frac{m}{kg})^2}} \\ m &=& 0.36\ m \cdot 5 \cdot \frac{kg}{m} \cdot \sqrt{ \frac{1}{6.674\cdot 10^{-11} } } \\ m &=& 1.8\cdot \sqrt{ \frac{1}{6.674\cdot 10^{-11} } }\ kg \\ m &=& 1.8\cdot \sqrt{ \frac{10^{11}}{6.674 } }\ kg \\ m &=& 1.8\cdot \sqrt{ \frac{10^{10}\cdot 10 }{6.674 } }\ kg \\ m &=& 1.8\cdot 10^5 \sqrt{ \frac{ 10 }{6.674 } }\ kg \\ m &=& 1.8\cdot 10^5 \cdot 1.22407181693\ kg \\ m &=& 2.20332927048\cdot 10^5 \ kg \\ \mathbf{m} &\mathbf{=}& \mathbf{2.20332927048\cdot 10^5 \ kg } \\ \end{array}\)

 

Their masses are each \(\mathbf{2.20332927048\cdot 10^5 \ kg }\)

 

laugh

26.02.2016
 #2
avatar+26387 
+35

I need a function that goes through these points:

(1, 1)

(2, 1.6)

(3, 2.4)

(4, 3)

(5, 4)

(6, 5)

(7, 6.4)

(8, 8)

 

Function:  \(\begin{array}{rcll} y &=& ax^7 + bx^6 + cx^5 + dx^4 + ex^3 + fx^2 + gx + h \\ \end{array} \)

 

We have eight equations:

\(\begin{array}{rcll} 1 &=& a\cdot (1)^7 + b\cdot (1)^6 + c\cdot (1)^5 + d\cdot (1)^4 + e\cdot (1)^3 + f\cdot (1)^2 + g\cdot (1) + h \\ 1.6 &=& a\cdot (2)^7 + b\cdot (2)^6 + c\cdot (2)^5 + d\cdot (2)^4 + e\cdot (2)^3 + f\cdot (2)^2 + g\cdot (2) + h \\ 2.4 &=& a\cdot (3)^7 + b\cdot (3)^6 + c\cdot (3)^5 + d\cdot (3)^4 + e\cdot (3)^3 + f\cdot (3)^2 + g\cdot (3) + h \\ 3 &=& a\cdot (4)^7 + b\cdot (4)^6 + c\cdot (4)^5 + d\cdot (4)^4 + e\cdot (4)^3 + f\cdot (4)^2 + g\cdot (4) + h \\ 4 &=& a\cdot (5)^7 + b\cdot (5)^6 + c\cdot (5)^5 + d\cdot (5)^4 + e\cdot (5)^3 + f\cdot (5)^2 + g\cdot (5) + h \\ 5 &=& a\cdot (6)^7 + b\cdot (6)^6 + c\cdot (6)^5 + d\cdot (6)^4 + e\cdot (6)^3 + f\cdot (6)^2 + g\cdot (6) + h \\ 6.4 &=& a\cdot (7)^7 + b\cdot (7)^6 + c\cdot (7)^5 + d\cdot (7)^4 + e\cdot (7)^3 + f\cdot (7)^2 + g\cdot (7) + h \\ 8 &=& a\cdot (8)^7 + b\cdot (8)^6 + c\cdot (8)^5 + d\cdot (8)^4 + e\cdot (8)^3 + f\cdot (8)^2 + g\cdot (8) + h \\ \end{array}\)

 

We need the inverse Matrix of:

(  1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,   {nl}    128.000000, 64.000000, 32.000000, 16.000000, 8.000000, 4.000000, 2.000000, 1.000000,   {nl}    2187.000000, 729.000000, 243.000000, 81.000000, 27.000000, 9.000000, 3.000000, 1.000000,   {nl}    16384.000000, 4096.000000, 1024.000000, 256.000000, 64.000000, 16.000000, 4.000000, 1.000000,   {nl}    78125.000000, 15625.000000, 3125.000000, 625.000000, 125.000000, 25.000000, 5.000000, 1.000000,   {nl}    279936.000000, 46656.000000, 7776.000000, 1296.000000, 216.000000, 36.000000, 6.000000, 1.000000,   {nl}    823543.000000, 117649.000000, 16807.000000, 2401.000000, 343.000000, 49.000000, 7.000000, 1.000000,   {nl}    2097152.000000, 262144.000000, 32768.000000, 4096.000000, 512.000000, 64.000000, 8.000000, 1.000000 )

 

The inverse Matrix is:

( -0.000198, 0.001389, -0.004167, 0.006944, -0.006944, 0.004167, -0.001389, 0.000198,

0.006944, -0.047222, 0.137500, -0.222222, 0.215278, -0.125000, 0.040278, -0.005556,

-0.101389, 0.663889, -1.862500, 2.902778, -2.715278, 1.525000, -0.476389, 0.063889,

0.798611, -4.972222, 13.312500, -19.888889, 17.923611, -9.750000, 2.965278, -0.388889,

-3.655556, 21.234722, -53.600000, 76.340278, -66.277778, 35.037500, -10.422222, 1.343056,

9.694444, -50.980556, 119.550000, -161.888889, 135.861111, -70.125000, 20.494444, -2.605556,

-13.742857, 62.100000, -133.533333, 172.750000, -141.000000, 71.433333, -20.600000, 2.592857,

8.000000, -28.000000, 56.000000, -70.000000, 56.000000, -28.000000, 8.000000, -1.000000 )

 

The coefficients (a,b,c,d,e,f,g,h) are:

a = -0.0013888889 {nl} b = 0.0441666667 {nl} c = -0.5747222222 {nl} d = 3.9375000000 {nl} e = -15.1805555556 {nl} f = 32.5183333333 {nl} g = -34.5433333333 {nl} h = 14.8000000000

 

The function is:

 

\(\small{ \begin{array}{rcll} y &=& -0.0013888889 \cdot x^7 + 0.0441666667\cdot x^6 -0.5747222222\cdot x^5 +\\ && +3.9375 \cdot x^4 -15.1805555556 \cdot x^3 + 32.5183333333\cdot x^2 -34.5433333333\cdot x + 14.8 \\ \end{array} }\)

 

or

\(\small{ \begin{array}{rcll} y &=& -\frac{1}{720} \cdot x^7 + \frac{53}{1200}\cdot x^6 -\frac{2069}{3600}\cdot x^5 + \frac{63}{16} \cdot x^4 -\frac{1093}{72} \cdot x^3 + 32.518\overline{3}\cdot x^2 -34.54\overline{3}\cdot x + \frac{74}{5} \\ \end{array} }\)

 

 

 

laugh

26.02.2016