Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
3252
2
avatar

What is the first term of the geometric sequence presented in the table below?
 

n      3      6

an  12   −324



Hint: an = a1(r)n − 1, where a1 is the first term and r is the common ratio.  

 Feb 28, 2016
 #1
avatar+130466 
0

12    =  a1(r)2   →    a1  = 12/r2      (1)
-324 =  a1(r)5     (2)

 

Putting  (1)  into (2), we have

 

-324  = (12/r2)(r)5

 

-324/12 = r3

 

-27  = r3    

 

r = (-27)1/3 = -3

 

So

 

a1  = 12/(-3)=  12/9  =  4/3

 

 

 

 

cool cool cool

 Feb 29, 2016
 #2
avatar+26396 
+5

What is the first term of the geometric sequence presented in the table below?
 

n      3      6

an  12   −324

 

 geometric sequence: ak=ajkjiiakijij 

 

a3=ai=12i=3a6=aj=324j=6a1=ak= ?k=1

 

a1=12(6163)(324)(1363)a1=12(53)(324)(23)a1=12(53)(324)(23)a1=3125(324)2a1=3248832104976a1=32.37037037037a1=1.33333333333a1=43

 

laugh

 Feb 29, 2016

0 Online Users