What is the first term of the geometric sequence presented in the table below?
n 3 6
an 12 −324
Hint: an = a1(r)n − 1, where a1 is the first term and r is the common ratio.
12 = a1(r)2 → a1 = 12/r2 (1)
-324 = a1(r)5 (2)
Putting (1) into (2), we have
-324 = (12/r2)(r)5
-324/12 = r3
-27 = r3
r = (-27)1/3 = -3
So
a1 = 12/(-3)2 = 12/9 = 4/3
What is the first term of the geometric sequence presented in the table below?
n 3 6
an 12 −324
geometric sequence: ak=aj−kj−ii⋅ak−ij−ij
a3=ai=12i=3a6=aj=−324j=6a1=ak= ?k=1
a1=12(6−16−3)⋅(−324)(1−36−3)a1=12(53)⋅(−324)(−23)a1=12(53)(−324)(23)a1=3√125(−324)2a1=3√248832104976a1=3√2.37037037037a1=1.33333333333a1=43