The limit, as x approaches 4, [5+(sqrt(x))]/[(sqrt(5))+x]
limx→4(5+√x√5+x)= ?limx→4(5+√x√5+x)=(5+√4√5+4)=(5+2√5+4)=(7√5+4)=1.12250219614
When fnding a square root of 64x4y16 do you minus the powers by two or divide them by two
64x4y16=82x4y16√64x4y16=√82x4y16√64x4y16=(82x4y16)12=(82)12⋅(x4)12⋅(y16)12=(8)2⋅12⋅(x)4⋅12⋅(y)16⋅12=(8)22⋅(x)42⋅(y)162=(8)1⋅(x)2⋅(y)8=81⋅x2⋅y8=8⋅x2⋅y8
You divide the powers by two.
what is the coefficient of the simplified expression of -5n+3(6+7n)
−5n+3(6+7n)=−5⋅n+3⋅6+3⋅7⋅n=−5⋅n+18+21⋅n=21⋅n−5⋅n+18=16⋅n+18=18+16⋅n
50 bacteria land on your tooth and they quadruple in number every hour, what is the equation?
now50 bacteria=50⋅40 bacteriaafter 1 hour50⋅4 bacteria=50⋅41 bacteriaafter 2 hours(50⋅41)⋅4 bacteria=50⋅42 bacteriaafter 3 hours(50⋅42)⋅4 bacteria=50⋅43 bacteriaafter 4 hours(50⋅43)⋅4 bacteria=50⋅44 bacteriaafter 5 hours(50⋅44)⋅4 bacteria=50⋅45 bacteria⋯⋯⋯after n hours=50⋅4n bacteria
There is a 4-digit number such as: abcd. When you raise each number to the power of itself and add up their products, thus: a^a + b^b + c^c + d^d, you get the original number that you started with, namely: abcd!. What is this unique 4-digit number? Thanks and have a good day.
aa+bb+cc+dd=abcd33+44+33+55=3435
Kann mir jemand eben erklären wie ich an diese aufage ran gehen muss?
(4925)32=(7252)32=(75)2⋅32=(75)3=(1,4)3(4925)32=2,744
(2^n)^n x (2^n)^3 x 4 =1
(2n)n⋅(2n)3⋅4=1(2n)n⋅(2n)3⋅22=202n2⋅23n⋅22=202n2+3n+2=20n2+3n+2=0
ax2+bx+c=0x=−b±√b2−4ac2a
n2+3n+2=0|a=1b=3c=2n=−3±√32−4⋅1⋅22⋅1n=−3±√9−82n=−3±√12n=−3±12n1=−3+12n1=−22n1=−1n2=−3−12n2=−42n2=−2
see: http://web2.0calc.com/questions/answer-please_98676
6^(2x+4)=3^(3x)*2^(x+8)
62x+4=33x⋅2x+862x⋅64=33x⋅2x⋅2862x⋅(2⋅3)4=33x⋅2x⋅2862x⋅24⋅34=33x⋅2x⋅28|:2462x⋅34=33x⋅2x⋅24(2⋅3)2x⋅34=33x⋅2x⋅2422x⋅32x⋅34=33x⋅2x⋅24|:2x22x−x⋅32x⋅34=33x⋅242x⋅32x⋅34=33x⋅24|:32x2x⋅34=33x−2x⋅242x⋅34=3x⋅242x3x=2434(23)x=(23)4x=4
Für eine Kiste mit 12 Flaschen Saft muss man 14,28 € bezahlen. Wie viel Euro muss man für 4 Flaschen bezahlen?
14,28 €12 Flaschen⋅4 Flaschen=14,28 €3=4,76 €
Für 4 Flaschen muss man 4,76 € bezahlen.