Processing math: 100%
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26397 
+10

 find the sum of 7 terms of 75,-15,3,-3/5

 

\small{  \text{ratio} = -\dfrac15 = -0.2 \qquad a_1 = 75  }\\\\  \small{  \text{geometric sequence: } a_n = a_1 \cdot r^{n-1}  }\\\\  \begin{array}{rclclcr}  \small{a_1 &=& 75 \cdot r^0 &=& 75 }\\ \\  \small{a_2 &=& 75 \cdot r^1 &=& 75 \cdot \left( -\dfrac15 \right)^1 &=& -15 }\\\\  \small{a_3 &=& 75 \cdot r^2 &=& 75 \cdot \left( -\dfrac15 \right)^2 &=& 3 }\\\\  \small{a_4 &=& 75 \cdot r^3 &=& 75 \cdot \left( -\dfrac15 \right)^3 &=& -0.6 }\\\\  \small{a_5 &=& 75 \cdot r^4 &=& 75 \cdot \left( -\dfrac15 \right)^4 &=& 0.12 }\\\\  \small{a_6 &=& 75 \cdot r^5 &=& 75 \cdot \left( -\dfrac15 \right)^5 &=& -0.024 }\\\\  \small{a_7 &=& 75 \cdot r^6 &=& 75 \cdot \left( -\dfrac15 \right)^6 &=& 0.0048 }\\\\  \end{array}\\\\  \small{  \mathrm{sum}_7 = 75-15+3-0.6+0.12-0.024+0.0048= 62.5008  }\\\\  \small{  \mathrm{sum}_7 = a_1 \cdot \left( \dfrac{ 1-r^7} {1-r} \right)  = 75\cdot \left( \dfrac{ 1-(-0.2)^7} {1-(-0.2)} \right)  =75\cdot \left( \dfrac{ 1+0.2^7} {1.2)} \right)  =62.5008  }

 

  sumn=a1(1rn1r)  

 

07.07.2015
 #2
avatar+26397 
+5

irene had a total of 1686 red,blue and green balloons for sale.the ratio of red to blue was 2:3.after irene sold 3/4 blue and 1/2 red.she had 922 balloons left.hiw many blue balloons does irene have at first ?

 

 (1)r+b+g=1686(2)rb=23 so r=23b(2) in (1):23b+b+g=1686(I)53b+g=1686(3)14b+12r+g=922(2) in (3):14b+1223b+g=92214b+13b+g=922312b+412b+g=922(II)712b+g=922(I)(II):53b712b=168692253b712b=7642012b712b=7641312b=764b=7641213b=705

 

Irene does  have at first 705 blue balloons.

check: 176 ( blue ) + 235 ( red ) + 511 ( green ) = 922

          705 ( blue )  + 470 ( red ) + 511 ( green ) = 1686

 

          176 / 705 = 1 / 4

          235 / 470 = 1 / 2

          705 * ( 2 / 3 ) = 470

 

06.07.2015
 #2
avatar+26397 
+10

Two math students erect a sun "shade" on the beach (similar to a lean too). This "shade" is rectangular in shape with dimensions 1.5 m long and 2 m wide, and it makes an angle of 60° with the ground. When the sun's rays cast down on this "shade" there will be an area of shade made on the ground (also a rectangle). What is the area of shade that the students will have to sit in at 12 noon ? (that is, what is the projection of the shade onto the ground)? (Assume the sun’s rays are shining directly down).

 

\vec{a}=1.5\cdot   \begin{pmatrix} \cos{ (60\ensurement{^{\circ}} ) \\ \sin{ (60\ensurement{^{\circ}} ) }\\ \end{pmatrix}\qquad  \vec{b} = \begin{pmatrix} 0\\2 \end{pmatrix}\\\\  \begin{array}{lll}  \text{area}=\left|\vec{a}_{projection}\times\vec{b} \right|   & \qquad \vec{a}_{projection} = \left(\vec{a}\cdot \vec{e}_x\right)\cdot \vec{e}_x   & \qquad \vec{e}_x = \begin{pmatrix} 1\\0 \end{pmatrix}\\\\  & \qquad \vec{a}_{projection} =\left( 1.5\cdot \begin{pmatrix} \cos{ (60\ensurement{^{\circ}} ) \\ \sin{ (60\ensurement{^{\circ}} ) }\\ \end{pmatrix}\cdot \begin{pmatrix} 1\\0 \end{pmatrix}\right)\cdot \begin{pmatrix} 1\\0 \end{pmatrix} \\\\  & \qquad \vec{a}_{projection} = \left( 1.5\cdot \cos{(60\ensurement{^{\circ}} )} +0\right) \cdot \begin{pmatrix} 1\\0 \end{pmatrix} \\\\  & \qquad \vec{a}_{projection} = \begin{pmatrix} 1.5\cdot \cos{(60\ensurement{^{\circ}} )}\\0 \end{pmatrix} \\\\  \text{area}=\left|\begin{pmatrix} 1.5\cdot \cos{(60\ensurement{^{\circ}} )}\\0 \end{pmatrix}\times\begin{pmatrix} 0\\2 \end{pmatrix} \right| \\\\  \text{area}=2\cdot 1.5\cdot \cos{ (60\ensurement{^{\circ}} ) }  \qquad | \qquad \cos{ (60\ensurement{^{\circ}} ) } = \dfrac{1}{2}\\\\  \text{area}=2\cdot 1.5\cdot \dfrac{1}{2}\\\\  \mathbf{\text{area}=1.5 ~\mathrm{m^2}}\\\\  \end{array}

 

06.07.2015
 #3
avatar+26397 
+8

Was ist die Ableitung von x*(x+1)^-1

 

1. Methode:

f(x)=x(x+1)1

  f(x)=uvf(x)=uv+uv  

u=xv=(x+1)1u=1v=(1)(x+1)21=(x+1)2f(x)=x[1(x+1)2]+1(x+1)1f(x)=x(x+1)2+(x+1)1f(x)=x(x+1)2+1x+1f(x)=x(x+1)2+1x+1(x+1x+1)f(x)=x+x+1(x+1)2f(x)=1(x+1)2

 

2. Methode:

f(x)=xx+1

  f(x)=uvf(x)=uv(uuvv)  

u=xv=x+1u=1v=1f(x)=xx+1(1x1x+1)f(x)=xx+1(x+1xx(x+1))f(x)=xx+1(1x(x+1))f(x)=1(x+1)2

 

06.07.2015
 #2
avatar+26397 
+15

\small{\text{$  \begin{array}{lcl}  $Let $ a, b, c, $ and $ n $ be positive integers. If $  a + b + c = 19 \cdot 97 $ and $ \\  \left[a + n = b - n = \dfrac{c}{n}\right],  $ compute the value of $ a .  \end{array}  $}}

 

\small{\text{$  \begin{array}{lrrrcl}  & a+b+c=19\cdot 97 \\  \\  \hline  \\  (1)& a+n=k \\  (2) & b-n=k &\qquad \qquad (1)+(2): & a+b&=& 2\cdot k\\  (3) & \dfrac{c}{n}=k &\qquad \qquad $so$ & c &=& k\cdot n\\\\  & & & a+b+c &=& 2\cdot k + k\cdot n=19\cdot 97  \\  \hline  \\  \end{array}  $}}\\\\  \small{\text{$  \begin{array}{rrclrcl}  & 2\cdot k + k\cdot n &=& 19\cdot 97\\\\  & k\cdot(2+n)&=& 19\cdot 97\\\\  I. & \textcolor[rgb]{1,0,0}{k}\cdot\textcolor[rgb]{0,0,1}{(2+n)}&=& \textcolor[rgb]{1,0,0}{19}\cdot \textcolor[rgb]{0,0,1}{97}\\\\  & \underline{k=19} && \underline{2+n = 97 }& \qquad \Rightarrow  \qquad n&=& 95\\  & && & a+n&=& k\\   & && & a+95&=& 19\\   & && & a&=& -76 ~$ negative! $\\ \\  II. & \textcolor[rgb]{1,0,0}{k}\cdot\textcolor[rgb]{0,0,1}{(2+n)}&=& \textcolor[rgb]{1,0,0}{97}\cdot \textcolor[rgb]{0,0,1}{19}\\\\  & \underline{k=97} && \underline{2+n = 19 }& \qquad \Rightarrow  \qquad n&=& 17\\  & && & a+n&=& k\\   & && & a+17&=& 97\\   & && & a&=& 80 ~$ okay! $\\   \end{array}  $}}

 

03.07.2015