Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26397 
+10

what is x if the equation is 2(tan-1(x/160)) = tan-1(x/60) ?

 

2[arctan(x160)]=arctan(x60)|φ=arctan(x160)2φ=arctan(x60)|tan()tan(2φ)=x60tan(2φ)=2tan(φ)1[tan(φ)]2 tan(2φ)=2tan(arctan(x160))1[tan(arctan(x160))]2 tan(2φ)=2x1601(x160)2 2x1601(x160)2=x6011(x160)2=431(x160)2=34(x160)2=14|±x160=±0.5x=±0.5160x1=80x2=80

 

10.07.2015
 #2
avatar+26397 
+10

is the sequence arithmetic?if so, identify the common difference. 14,21,42,77...

 

This ist a ARITHMETIC SEQUENCE OF HIGHER ORDER.

The sequence  is arithmetic of order k if the differences of order k are equal.

We have the order k = 2. The second differences are equal = 14.

Let us see:

\small{\text{$  \begin{array}{lcccccccccc}   $Number $a &a_1=\textcolor[rgb]{1,0,0}{ 14}& & 21& & 42& &77 & &126 & \cdots \\  $First difference $D^1 & & D_0^1=\textcolor[rgb]{1,0,0}{7}& & 21 & & 35 & & 49 & \cdots \\  $Second difference $D^2 & & & D_0^2=\textcolor[rgb]{1,0,0}{14}& & 14& &14 & \cdots \\  \end{array}  $}}

 

If we have a arithmetic sequence of order k, we can find an by :

  an=a1+(n11)D10+(n12)D20++(n1k)Dk0  

So the nth term is given by:

an=a1+(n11)D10+(n12)D20an=14+(n11)7+(n12)14|(n11)=n1(n12)=(n2)(n1)2an=14+(n1)7+(n2)(n1)214an=14+(n1)7+(n2)(n1)7an=14+7(n1)[1+(n2)]an=14+7(n1)(n1)an=14+7(n1)2|n1

 

09.07.2015
 #2
avatar+26397 
+15

Four positive integers $a$$b$$c$, and $d$ satisfy
\begin{align*} ab + a + b &= 524, \\ bc + b + c &= 146, \\ cd + c + d &= 104, \\ \end{align*}
and $abcd=8!$.

 

I. We calculate a:

(1)ab+a+b=524b(1+a)+a=524b=524a1+a(2)bc+b+c=146b(1+c)+c=146b=146c1+c(1)=(2)b=524a1+a=146c1+c524a1+a=146c1+c(1+c)(524a)=(1+a)(146c)(524a)+c(524a)=146(1+a)c(1+a)c(524a+1+a)=146(1+a)(524a)c525=146(1+a)524+ac525=146+146a524+ac525=378+147ac525=378+147ac=0.72+0.28a|2525c=18+7a25c+7a=18

 

First we have find the solution for -25c + 7a = -1. And then we can multiply by (-18)

There is only a solution when gcd( -25,7) = -1 or in other words -25 and 7 are relatively prime.

(gcd = greatest common divisor)

 

Using the Euclidian algorithm to calcutate gcd(-25,7)

qr25734741343113130

 

The greatest common divisor gcd(-25,7) =1

 

Using Extended Euclidean algorithm to calculate the first solution

  qrca2573421(3)(2)=7741311(1)1=2431110(1)1=131300031=1
 
The first solution a0 and c0: -25c + 7a = -1
 
25(2)+7(7)=1|(18)25[2(18)]+7[7(18)]=1825(36)+7(126)=18
 
 The first solution is (36,126)25(36)+7(126)=1
 

Next positive solution:

Cc0+Aa0=1First solution  (c0, a0)All solutions  (c0+zAgcd(C,A), a0zCgcd(C,A))

 

 25c+7a=18First solution  (c0=36, a0=126)All solutions  (36z71, 126+z(25)1)

we have:

{ ( 36+7z, 126+25z) | zZ }

 

c = -36+7*6 = 6

a = -126 + 25*6 = 24

 

b=524a1+ab=524241+24b=50025b=20

 

cd+c+d=104d=104c1+cd=10461+6d=987d=14

 

check:

abcd=2420614=8!=40320 okay 

 

08.07.2015