Four positive integers
,
,
, and
satisfy

and
.
I. We calculate a:
(1)ab+a+b=524b(1+a)+a=524b=524−a1+a(2)bc+b+c=146b(1+c)+c=146b=146−c1+c(1)=(2)b=524−a1+a=146−c1+c524−a1+a=146−c1+c(1+c)(524−a)=(1+a)(146−c)(524−a)+c(524−a)=146(1+a)−c(1+a)c(524−a+1+a)=146(1+a)−(524−a)c⋅525=146(1+a)−524+ac⋅525=146+146a−524+ac⋅525=−378+147ac⋅525=−378+147ac=−0.72+0.28a|⋅2525c=−18+7a−25c+7a=18
First we have find the solution for -25c + 7a = -1. And then we can multiply by (-18)
There is only a solution when gcd( -25,7) = -1 or in other words -25 and 7 are relatively prime.
(gcd = greatest common divisor)
Using the Euclidian algorithm to calcutate gcd(-25,7)
qr−257−3−47−4−13−43−1−13−1−30
The greatest common divisor gcd(-25,7) =−1
Using Extended Euclidean algorithm to calculate the first solution
qrca−257−3−421−(−3)(2)=77−4−1311−(−1)⋅1=2−43−1−110−(−1)⋅1=13−1−3000⋅3−1=1
The first solution a0 and c0: -25c + 7a = -1
−25(2)+7(7)=−1|⋅(−18)−25[2⋅(−18)]+7[7⋅(−18)]=18−25⋅(−36)+7⋅(−126)=18
The first solution is (−36,−126)−25⋅(−36)+7⋅(−126)=1
Next positive solution:
C⋅c0+A⋅a0=−1First solution (c0, a0)All solutions (c0+z⋅Agcd(C,A), a0−z⋅Cgcd(C,A))
−25⋅c+7⋅a=18First solution (c0=−36, a0=−126)All solutions (−36−z⋅7−1, −126+z⋅(−25)−1)
we have:
{ ( −36+7⋅z, −126+25⋅z) | z∈Z }
c = -36+7*6 = 6
a = -126 + 25*6 = 24
b=524−a1+ab=524−241+24b=50025b=20
cd+c+d=104d=104−c1+cd=104−61+6d=987d=14
check:
a⋅b⋅c⋅d=24⋅20⋅6⋅14=8!=40320 okay
