heureka

avatar
Benutzernameheureka
Punkte26388
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26388 
+10

is the sequence arithmetic?if so, identify the common difference. 14,21,42,77...

 

This ist a ARITHMETIC SEQUENCE OF HIGHER ORDER.

The sequence  is arithmetic of order k if the differences of order k are equal.

We have the order k = 2. The second differences are equal = 14.

Let us see:

$$\small{\text{$
\begin{array}{lcccccccccc}
$Number $a &a_1=\textcolor[rgb]{1,0,0}{ 14}& & 21& & 42& &77 & &126 & \cdots \\
$First difference $D^1 & & D_0^1=\textcolor[rgb]{1,0,0}{7}& & 21 & & 35 & & 49 & \cdots \\
$Second difference $D^2 & & & D_0^2=\textcolor[rgb]{1,0,0}{14}& & 14& &14 & \cdots \\
\end{array}
$}}$$

 

If we have a arithmetic sequence of order k, we can find $$a_n$$ by :

$$\boxed{~~a_n = a_1 + \binom{n-1}{1}\cdot D_0^1 + \binom{n-1}{2}\cdot D_0^2+\cdots+\binom{n-1}{k}\cdot D_0^k
~~}$$

So the nth term is given by:

$$\small{\text{$
\begin{array}{rcl}
a_n &=& a_1 + \binom{n-1}{1}\cdot D_0^1 + \binom{n-1}{2}\cdot D_0^2\\\\
a_n &=& \textcolor[rgb]{1,0,0}{14} + \binom{n-1}{1}\cdot \textcolor[rgb]{1,0,0}{7} + \binom{n-1}{2}\cdot \textcolor[rgb]{1,0,0}{14} \qquad
| \qquad \binom{n-1}{1} = n-1 \qquad \binom{n-1}{2}=\dfrac{(n-2)(n-1)}{2}\\\\
a_n &=& \textcolor[rgb]{1,0,0}{14} + (n-1)\cdot \textcolor[rgb]{1,0,0}{7} + \dfrac{(n-2)(n-1)}{2}\cdot \textcolor[rgb]{1,0,0}{14} \\\\
a_n &=& \textcolor[rgb]{1,0,0}{14} + (n-1)\cdot \textcolor[rgb]{1,0,0}{7} + (n-2)(n-1)\cdot 7 \\\\
a_n &=& \textcolor[rgb]{1,0,0}{14} + 7(n-1)[1+(n-2)]\\\\
a_n &=& \textcolor[rgb]{1,0,0}{14} + 7(n-1)(n-1)\\\\
\mathbf{a_n} & \mathbf{=} & \mathbf{14 + 7(n-1)^2} \qquad | \qquad n \ge 1 \\
\end{array}
$}}$$

 

09.07.2015
 #2
avatar+26388 
+15

Four positive integers $a$$b$$c$, and $d$ satisfy
\begin{align*} ab + a + b &= 524, \\ bc + b + c &= 146, \\ cd + c + d &= 104, \\ \end{align*}
and $abcd=8!$.

 

I. We calculate a:

$$\small{\text{$
\begin{array}{lrcl}
(1) & ab+a+b &=& 524 \\\\
& b(1+a)+a &=& 524\\\\
& b &=& \dfrac{524-a} {1+a} \\\\
(2) & bc + b + c &=& 146 \\\\
& b(1+c)+c &=& 146 \\\\
& b &=& \dfrac{146-c}{1+c}\\\\
\\
\hline
\\
(1) = (2) & b = \dfrac{524-a} {1+a} &=& \dfrac{146-c}{1+c}\\\\
& \dfrac{524-a} {1+a} &=& \dfrac{146-c}{1+c}\\\\
& (1+c)(524-a) &=& (1+a)(146-c)\\\\
& (524-a)+c(524-a) &=& 146(1+a)-c(1+a)\\\\
& c(524-a +1+a) &=& 146(1+a)-(524-a)\\\\
& c\cdot 525 &=& 146(1+a)-524+a\\\\
& c\cdot 525 &=& 146 +146a-524+a\\\\
& c\cdot 525 &=& -378+147a\\\\
& c\cdot 525 &=& -378+147a\\\\
& \mathbf{c }& \mathbf{=}& \mathbf{ -0.72 + 0.28a } \qquad | \qquad \cdot 25\\\\
& \mathbf{25c }& \mathbf{=}& \mathbf{ -18+ 7a } \\\\
& \mathbf{-25c+7a }& \mathbf{=}& \mathbf{ 18 }
\end{array}
$}}$$

 

First we have find the solution for -25c + 7a = -1. And then we can multiply by (-18)

There is only a solution when gcd( -25,7) = -1 or in other words -25 and 7 are relatively prime.

(gcd = greatest common divisor)

 

Using the Euclidian algorithm to calcutate gcd(-25,7)

$$\small{\begin{array}{|r|r|r|r|}
\hline&&&\\
& & q& r \\
\hline &&&\\
-25 & 7 & -3 & -4 \\
7 & -4 & -1 & 3 \\
-4 & 3 & -1 & \textcolor[rgb]{1,0,0}{-1} \\
3 & -1 & -3 & 0 \\
&&&\\
\hline\end{array}}$$

 

The greatest common divisor gcd(-25,7) $$\textcolor[rgb]{1,0,0}{=-1}$$

 

Using Extended Euclidean algorithm to calculate the first solution

  $$\small{\begin{array}{|r|r|r|r||r|r|}
\hline&&&&&\\
& & q& r &c&a\\
\hline &&&&&\\
-25 & 7 & -3 & -4 & \textcolor[rgb]{1,0,0}{2} & 1-(-3)(2) = \textcolor[rgb]{1,0,0}{7}\\
7 & -4 & -1 & 3 & 1 & 1 -(-1)\cdot 1 = 2\\
-4 & 3 & -1 & -1 & 1 & 0 - (-1)\cdot 1 = 1 \\
3 & -1 & -3 & 0 & 0 & 0\cdot 3 -1 = 1\\
&&&&&\\
\hline\end{array}}$$
 
The first solution $$a_0$$ and $$c_0$$: -25c + 7a = -1
 
$$\small{\text{$
\begin{array}{rcl}
-25(2) + 7(7) &=& -1 \qquad | \quad \cdot(-18) \\
-25[2\cdot (-18) ] + 7 [7\cdot (-18) ] &=& 18 \\
-25\cdot (-36) + 7 \cdot (-126) &=& 18 \\
\end{array}
$}}$$
 
$$\small{\text{ The first solution is $ (-36,-126) \qquad -25 \cdot (\textcolor[rgb]{1,0,0}{ -36} ) + 7 \cdot (\textcolor[rgb]{1,0,0}{-126}) = 1 $}}\\\\$$
 

Next positive solution:

$$\small{\text{$
\begin{array}{lcl}
\boxed{
C\cdot c_0 + A \cdot a_0 = -1 }\\\\
\mathrm{First~ solution~~} (c_0,~ a_0)\\
\mathrm{All~ solutions~~} \left(c_0+\dfrac{z\cdot A}{ gcd(C,A) } ,~ a_0 - \dfrac{z\cdot C}{ gcd(C,A) }\right)\\
\end{array}
$}}\\\\$$

 

 $$\small{\text{$
\begin{array}{lcl} \boxed{-25\cdot c + 7 \cdot a = 18 }\\\\
\mathrm{First~ solution~~} (c_0=-36,~ a_0=-126)\\
\mathrm{All~ solutions~~} \left(-36-\dfrac{z\cdot 7}{ -1 } ,~ -126 + \dfrac{z\cdot (-25) }{ -1 }\right)\\
\end{array}$}}\\\\$$

we have:

$$\small{\text{$
\begin{array}{lcl} \left\{~\left(~ -36 + 7\cdot z,~ -126 +25\cdot z\right)~|~z \in Z ~ \right\} \\
\end{array} $}}$$

 

c = -36+7*6 = 6

a = -126 + 25*6 = 24

 

$$\small{\text{$
\begin{array}{lcl}
b &=& \dfrac{524-a} {1+a} \\\\
b &=& \dfrac{524-24} {1+24} \\\\
b &=& \dfrac{500} {25} \\\\
\mathbf{b} &\mathbf{=}& \mathbf{20}
\end{array}
$}}$$

 

$$\small{\text{$
\begin{array}{lcl}
cd+c+d &=& 104\\\\
d &=& \dfrac{104-c} {1+c} \\\\
d &=& \dfrac{104-6} {1+6} \\\\
d &=& \dfrac{98} {7} \\\\
\mathbf{d} &\mathbf{=}& \mathbf{14}
\end{array}
$}}$$

 

check:

$$a\cdot b \cdot c \cdot d = 24 \cdot 20 \cdot 6 \cdot 14 = 8! = 40320 \qquad \text{ okay }$$

 

08.07.2015