heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #1
avatar+26387 
+8

Vectors A and B are at angles α = 44.9° and β = 26.2° up from the x-axis respectively. If the vector sum A B C = 0, what are the magnitudes of A and B?

a = magnitude of A,   b = magnitude of B

$$\small{
\vec{A} = a\cdot \begin{pmatrix}\cos{\alpha}\\\sin{\alpha}\end{pmatrix}\quad
\vec{B} = b\cdot \begin{pmatrix}\cos{\beta}\\\sin{\beta}\end{pmatrix}
\qquad
\vec{A}_{\bot }= \begin{pmatrix}-\sin{\alpha}\\\cos{\alpha}\end{pmatrix}\quad
\vec{B}_{\bot } =\begin{pmatrix}-\sin{\beta}\\\cos{\beta}\end{pmatrix}
}\\\\
\small{
\begin{array}{rcl}
a\vec{A}+b\vec{B}+\vec{c}&=&\vec{0}\quad | \quad \cdot \vec{B}_{\bot }\\
a\vec{A}\vec{B}_{\bot }+b\vec{B}\vec{B}_{\bot }+\vec{c}\vec{B}_{\bot }&=&\vec{0}\quad | \quad \vec{B}\cdot {\vec{B}_{\bot }=0 \\
a\vec{A}\vec{B}_{\bot }+\vec{c}\vec{B}_{\bot }&=&\vec{0} \\
a &=&\dfrac { -\vec{c}\vec{B}_{\bot } } {\vec{A}\vec{B}_{\bot }}\\
a &=& \vec{c}\cdot \begin{pmatrix}\frac{ \sin{\beta} }{ \sin{ (\alpha-\beta) }} \\\\ \frac{-\cos{\beta}}{\sin{ (\alpha-\beta) }} \end{pmatrix}
= \vec{c}\cdot \begin{pmatrix}1.37706788482\\ -2.79857147409\end{pmatrix}\\
\end{array}
}\\\\\\
\small{
\begin{array}{rcl}
a\vec{A}+b\vec{B}+\vec{c}&=&\vec{0}\quad | \quad \cdot \vec{A}_{\bot }\\
a\vec{A}\vec{A}_{\bot }+b\vec{B}\vec{A}_{\bot }+\vec{c}\vec{A}_{\bot }&=&\vec{0}\quad | \quad \vec{A}\cdot {\vec{A}_{\bot }=0 \\
b\vec{B}\vec{A}_{\bot }+\vec{c}\vec{A}_{\bot }&=&\vec{0} \\
b &=&\dfrac { -\vec{c}\vec{A}_{\bot } } {\vec{B}\vec{A}_{\bot }}\\
b &=& \vec{c}\cdot \begin{pmatrix}\frac{ -\sin{\alpha} }{ \sin{(\alpha-\beta)}} \\\\ \frac{\cos{\alpha}}{\sin{(\alpha-\beta)}} \end{pmatrix}
= \vec{c}\cdot \begin{pmatrix}-2.20163122333\\ 2.20932981047\end{pmatrix}\\
\end{array}
}$$

.
25.06.2015
 #1
avatar+26387 
+18

In the following fighure ,if triangle ABC is a right triangle,angle A= 90 degrees,point D located on AC ,point E is loacted on BC, $${\mathtt{AB}} = {\frac{{\mathtt{1}}}{{\mathtt{2}}}}{\mathtt{\,\times\,}}{\mathtt{BD}}$$ ,and $${\mathtt{CE}} = {\frac{{\mathtt{1}}}{{\mathtt{4}}}}{\mathtt{\,\times\,}}{\mathtt{EB}}$$. angle BDE=120 degrees,CD=3, then BC=?

 

We define:  CD = 3,  AB = y,   DB = 2y,   CE = x,   EB =  4x,   BC = 5x,   ED = u,   DA = d

1. Pythagoras:

$$\small{\overline{AB}^2 + \overline{DA}^2 = \overline{DB}^2}\\
\small{y^2+d^2=4y^2\qquad d^2 = 3y^2 \qquad d = \sqrt{3}y }$$

 

2. Pythagoras:

$$\small{\overline{CA}^2 + \overline{AB}^2 = \overline{BC}^2 \qquad \overline{CA} = 3+\sqrt{3}y}\\\\
\small{ (3+\sqrt{3}y)^2+y^2=(5x)^2\qquad \cdots \qquad
\boxed{x = \dfrac{ \sqrt{ 4y^2+6\sqrt{3}y+9 } } {5} ~~(1) }}$$

 

3. cos-rule:

$$\small{u^2 = 3^2 + x^2 - 2\cdot 3\cdot x \cdot \cos{(C)}\qquad \cos{(C)} = \dfrac{ 3 + \sqrt{3}y }{5x} \quad \cdots \quad \boxed{ u = \sqrt{x^2-1.2\sqrt{3}+5.4} ~~(2)}}$$

4. cos-rule:

$$\small{
\begin{array}{lcl}
(4x)^2 = u^2+(2y)^2-2u2y\cos{ (120\ensurement{^{\circ}}) } \quad \cos{(120\ensurement{^{\circ}}) } = -\frac{1}{2} \quad \cdots \quad 16x^2=u^2+4y^2+2uy \\
\text{we substitute u, formula (2)}\\
\cdots\\
15x^2 = -1.2\sqrt{3}y+5.4+4y^2+2y\sqrt{x^2-1.2\sqrt{3}y+5.4}\\
\text{we substitute first x, formula (1)}\\
\cdots\\
\frac{12}{5}y^2+}\frac{18}{5}\sqrt{3}y=4y^2-1.2\sqrt{3}y+2y\sqrt{x^2-1.2\sqrt{3}y+5.4} \qaud | \quad :y \\
\frac{12}{5}y+}\frac{18}{5}\sqrt{3}=4y-1.2\sqrt{3}+2\sqrt{x^2-1.2\sqrt{3}y+5.4} \\
\cdots\\
x^2-1.2\sqrt{3}y+5.4=(2.4\sqrt{3}-0.8y)^2\\
\text{we substitute again x, formula (1)}\\
\cdots\\
0.16y^2+0.24\sqrt{3}y+0.36-1.2\sqrt{3}y+5.4=17.28-3.84\sqrt{3}y+0.64y^2\\
0.48y^2-2.88\sqrt{3}y+11.52=0 \quad | :0.48 \quad \\
\boxed{y^2-6\sqrt{3}+24 = 0} \\\\
y_{1,2} = \frac{6\sqrt{3}\pm \2\sqrt{3}}{2}\\
y_1 = 4\sqrt{3} \quad \text{no solution}\\
y_2 = 2\sqrt{3} \quad \text{solution}\\\\
x = \dfrac{ \sqrt{ 4y^2+6\sqrt{3}y+9 } } {5} \\\\
x = \dfrac{ \sqrt{ 4 (2\sqrt{3})^2+6\sqrt{3}( 2\sqrt{3})+9 } } {5} \\\\
x = \dfrac{ \sqrt{ 48 +36+9 } } {5} \\\\
x = 1.92873015220\\\\
\mathbf{ \overline{BC} =5x = 9.64365076099 }
\end{array}
}$$

 

24.06.2015
 #1
avatar+26387 
+8

 

Berechnen Sie x, sodass die Dreiecksfläche, die durch diese Vektoren aufgespannt wird, 11,66mm beträgt. Gegeben sind die Vektoren a=(0,3,4) ; b=(x,3,0)

 

$$\small{
\begin{array}{rcl}
2A_{\text{Dreieck}} &=&\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} \\\\
2A_{\text{Dreieck}} &=& \begin{Vmatrix} 1 & 1 & 1 \\ 0 & 3 & 4 \\ x & 3 & 0 \end{Vmatrix} \\ \\
2A_{\text{Dreieck}} &=&
\left{|} \begin{pmatrix}
\begin{vmatrix} 3 & 4 \\ 3 & 0 \end{vmatrix}\\
-\begin{vmatrix} 0 & 4 \\ x & 0 \end{vmatrix}\\
\begin{vmatrix} 0 & 3 \\ x & 3 \end{vmatrix}
\end{pmatrix} \right{|} \\ \\
2A_{\text{Dreieck}} &=&
| \begin{pmatrix} -12 \\ 4x \\ -3x \end{pmatrix} | \\ \\
\end{array}
}$$

Probe. Der Flächenvektor muss senkrecht stehen zu a und b:

$$\small{
\begin{array}{rcl}
\begin{pmatrix} -12 \\ 4x \\ -3x \end{pmatrix}\cdot \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} = 12x-12x = 0 \qquad \text{okay}\\\\
\begin{pmatrix} -12 \\ 4x \\ -3x \end{pmatrix}\cdot \begin{pmatrix} x \\ 3 \\ 0 \end{pmatrix} = -12x+12x = 0 \qquad \text{okay}
\end{array}$$

 

Die Berechnung von x:

$$\small{
\begin{array}{rcl}
2\cdot A_{\text{Dreieck}} &=& \sqrt{(-12)^2+(4x)^2+(-3)^2 } \\
2\cdot A_{\text{Dreieck}} &=& \sqrt{ 144 + 16x^2 + 9x^2 } \\
2\cdot A_{\text{Dreieck}} &=& \sqrt{ 144 + 25x^2 } \quad | \quad 1^2 \\
25x^2 + 144 &=& 4\cdot A_{\text{Dreieck}}^2\\
25x^2 &=& 4\cdot A_{\text{Dreieck}}^2 + 144 \\
25x^2 &=& 4 \cdot 11,66^2 + 144 \\
25x^2 &=& 543,8224 + 144 \\
25x^2 &=& 399,8224 \\
25x^2 &=& 399,8224 \quad | \quad \sqrt{}\\
5x &=& \pm 19.9955595071 \\
x &=& \pm 3.99911190141 \\\\
\mathbf{x} &\mathbf{\approx}& \mathbf{\pm 4 }
\end{array}
}$$

 

Probe:  a=(0,3,4) ; b=(4,3,0)

$$\small{
\begin{array}{rcl}
2A_{\text{Dreieck}} &=&\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} \\\\
2A_{\text{Dreieck}} &=& \begin{Vmatrix} 1 & 1 & 1 \\ 0 & 3 & 4 \\ 4 & 3 & 0 \end{Vmatrix} \\ \\
2A_{\text{Dreieck}} &=&
\left{|} \begin{pmatrix}
\begin{vmatrix} 3 & 4 \\ 3 & 0 \end{vmatrix}\\
-\begin{vmatrix} 0 & 4 \\ 4 & 0 \end{vmatrix}\\
\begin{vmatrix} 0 & 3 \\ 4 & 3 \end{vmatrix}
\end{pmatrix} \right{|} \\ \\
2A_{\text{Dreieck}} &=&
| \begin{pmatrix} -12 \\ 16 \\ -12 \end{pmatrix} | \\ \\
\end{array}
}$$

 

$$\small{
\begin{array}{rcl}
2\cdot A_{\text{Dreieck}} &=& \sqrt{(-12)^2+(16)^2+(-12)^2 } \\
2\cdot A_{\text{Dreieck}} &=& \sqrt{ 144 + 256 + 144 } \\
2\cdot A_{\text{Dreieck}} &=& \sqrt{ 544 } \\
2\cdot A_{\text{Dreieck}} &=& 23,3238075794\\ \\
\mathbf{A_{\text{Dreieck}}} &\mathbf{=}& \mathbf{ 11,66 \quad \text{okay} }
\end{array}
}$$

.
24.06.2015