heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #4
avatar+26387 
+10

 1027x+712y=1

(gcd = greatest common divisor)

 

1. There is only a solution when gcd( 1027, 712 ) = 1 or in other words 1027 and 712 are relatively prime.

 

2. Using the Euclidian algorithm to calcutate gcd(1027,712)

 

$$\small{
\begin{array}{|r|r|r|r|}
\hline
&&&\\
a & b & q& r \\
\hline
&&&\\
1027 & 712 & 1 & 315 \\
712 & 315 & 2 & 82 \\
315 & 82 & 3 & 69 \\
82 & 69 & 1 & 13 \\
69 & 13 & 5 &4 \\
13 & 4 &3 & \textcolor[rgb]{1,0,0}{1} \\
4 & 1 & 4 & 0 \\
&&&\\
\hline
\end{array}
}$$

The greatest common divisor gcd(1027,712) $$\textcolor[rgb]{1,0,0}{=1}$$

and we can go on

 

3. Using Extended Euclidean algorithm to calculate the first solution

$$\small{
\begin{array}{|r|r|r|r||r|r|}
\hline
&&&&&\\
a & b & q& r &x&y\\
\hline
&&&&&\\
1027 & 712 & 1 & 315 & \textcolor[rgb]{1,0,0}{-165} & 73 - 1 (-165) = \textcolor[rgb]{1,0,0}{238}\\
712 & 315 & 2 & 82 & 73 & -19 - 2\cdot 73 = -165\\
315 & 82 & 3 & 69 & -19 & 16 -3(-19) = 73\\
82 & 69 & 1 & 13 & 16 & -3 -1\cdot 16 = -19\\
69 & 13 & 5 &4 & - 3 & 1 -5(-3) = 16\\
13 & 4 &3 & 1 & 1 & 0 - 3\cdot 1 = -3 \\
4 & 1 & 4 & 0 & 0 & 0\cdot 4 + 1 = 1\\
&&&&&\\
\hline
\end{array}
}$$

 

$$\small{\text{
The first solution is $ (-165,238) \qquad 1027 \cdot (\textcolor[rgb]{1,0,0}{ -165} ) + 712 \cdot \textcolor[rgb]{1,0,0}{238} = 1
$}}\\\\$$

4. All Solutions:

$$\small{\text{$
\begin{array}{lcl}
\boxed{
a\cdot x + b \cdot y = 1 }\\\\
\mathrm{First~ solution~~} (x_0,~ y_0)\\
\mathrm{All~ solutions~~} \left(x_0+\dfrac{z\cdot b}{ gcd(a,b) } ,~ y_0 - \dfrac{z\cdot a}{ gcd(a,b) }\right)\\
\end{array}
$}}\\\\$$

 

$$\small{\text{$
\begin{array}{lcl}
\boxed{
1027\cdot x + 712 \cdot y = 1 }\\\\
\mathrm{First~ solution~~} (x_0=-165,~ y_0=238)\\
\mathrm{All~ solutions~~} \left(-165+\dfrac{z\cdot 712}{ 1 } ,~ 238 - \dfrac{z\cdot 1027}{ 1 }\right)\\
\end{array}
$}}\\\\$$

 

we have:

$$\small{\text{$
\begin{array}{lcl}
\left\{~\left(~ -165 + 712\cdot z,~ 238 - 1027\cdot z\right)~|~z \in Z ~
\right\} \\
\end{array}
$}}\\\\$$

 

02.07.2015
 #1
avatar+26387 
+16

show me the process of solving (1-cot200)(1-cot25)

 

$$\small{ \text{$
\begin{array}{rcl}
\left[ 1 - \cot{(200\ensurement{^{\circ}})} ] \cdot [ 1 - \cot{(25\ensurement{^{\circ}})} \right]\\\\
&=& \left[ 1 -
\dfrac { 1 }
{ \tan{ ( 200\ensurement{^{\circ}} ) } }
\right]
\cdot
\left[ 1 -
\dfrac { 1 }
{ \tan{ ( 25\ensurement{^{\circ}} ) } }
\right]\\\\
&=& \left[
\dfrac { \tan{ ( 200\ensurement{^{\circ}} ) } - 1 }
{ \tan{ ( 200\ensurement{^{\circ}} ) } }
\right]
\cdot
\left[
\dfrac { \tan{ ( 25\ensurement{^{\circ}} ) } - 1 }
{ \tan{ ( 25\ensurement{^{\circ}} ) } }
\right]\\\\
&=&
\dfrac { \left[\tan{ ( 200\ensurement{^{\circ}} ) } - 1\right]\cdot \left[ \tan{ ( 25\ensurement{^{\circ}} ) } - 1 \right] }
{ \tan{ ( 200\ensurement{^{\circ}} ) }\cdot \tan{ ( 25\ensurement{^{\circ}} ) } }\\\\
&=&
\dfrac
{
\tan{ ( 200\ensurement{^{\circ}} ) }\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
- \tan{ ( 200\ensurement{^{\circ}} ) } - \tan{ ( 25\ensurement{^{\circ}} ) }
+1
}
{
\tan{ ( 200\ensurement{^{\circ}} ) }\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
}\\\\
&=&
\dfrac
{
\tan{ ( 200\ensurement{^{\circ}} ) }\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
- \left[ \tan{ ( 200\ensurement{^{\circ}} ) } + \tan{ ( 25\ensurement{^{\circ}} ) } \right]
+1
}
{
\tan{ ( 200\ensurement{^{\circ}} ) }\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
}\\\\
\end{array}
$}}$$

 

$$\\\small{ \text{Formula: $
\begin{array}{rcl}
&&\\
&&\\
&&\\
&&\\
\boxed{
\tan{ (200\ensurement{^{\circ}}+25\ensurement{^{\circ}} ) }
=
\dfrac { \tan{ ( 200\ensurement{^{\circ}} ) }
+ \tan{ ( 25\ensurement{^{\circ}} ) } }
{ 1 - \tan{ ( 200\ensurement{^{\circ}} ) }
\cdot \tan{ ( 25\ensurement{^{\circ}} ) } }
\qquad \tan{ (200\ensurement{^{\circ}}+25\ensurement{^{\circ}} ) }
= \tan{ (225\ensurement{^{\circ}} ) }
= \tan{ (180\ensurement{^{\circ}}+45\ensurement{^{\circ}} ) }
= \tan{ (45\ensurement{^{\circ}} ) }
= 1
}
\end{array}
$}} \\\\
\small{ \text{$
\begin{array}{rcl}
1 &=&
\dfrac { \tan{ ( 200\ensurement{^{\circ}} ) }
+ \tan{ ( 25\ensurement{^{\circ}} ) } }
{ 1 - \tan{ ( 200\ensurement{^{\circ}} ) }
\cdot \tan{ ( 25\ensurement{^{\circ}} ) } }\\\\
1 - \tan{ ( 200\ensurement{^{\circ}} ) }
\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
&=&
\tan{ ( 200\ensurement{^{\circ}} ) + \tan{ ( 25\ensurement{^{\circ}} ) } } \\\\
\end{array}
$}}$$

 

$$\small{ \text{$
\begin{array}{rcl}
\left[ 1 - \cot{(200\ensurement{^{\circ}})} ] \cdot [ 1 - \cot{(25\ensurement{^{\circ}})} \right]
&=&
\dfrac
{
\tan{ ( 200\ensurement{^{\circ}} ) }\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
- \left[ \tan{ ( 200\ensurement{^{\circ}} ) } + \tan{ ( 25\ensurement{^{\circ}} ) } \right]
+1
}
{
\tan{ ( 200\ensurement{^{\circ}} ) }\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
}\\\\
&=&
\dfrac
{
\tan{ ( 200\ensurement{^{\circ}} ) }\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
- \left[ 1 - \tan{ ( 200\ensurement{^{\circ}} ) }
\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
\right]
+1
}
{
\tan{ ( 200\ensurement{^{\circ}} ) }\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
}\\\\
&=&
\dfrac
{
\tan{ ( 200\ensurement{^{\circ}} ) }\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
-1 + \tan{ ( 200\ensurement{^{\circ}} ) }
\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
+1
}
{
\tan{ ( 200\ensurement{^{\circ}} ) }\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
}\\\\
\end{array}
$}}$$

 

$$\small{ \text{$
\begin{array}{rcl}
\left[ 1 - \cot{(200\ensurement{^{\circ}})} ] \cdot [ 1 - \cot{(25\ensurement{^{\circ}})} \right]
&=&
\dfrac
{
\tan{ ( 200\ensurement{^{\circ}} ) }\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
+ \tan{ ( 200\ensurement{^{\circ}} ) }
\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
}
{
\tan{ ( 200\ensurement{^{\circ}} ) }\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
}\\\\
&=&
2\cdot \dfrac
{
\tan{ ( 200\ensurement{^{\circ}} ) }\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
}
{
\tan{ ( 200\ensurement{^{\circ}} ) }\cdot \tan{ ( 25\ensurement{^{\circ}} ) }
}\\\\
\mathbf{
\left[ 1 - \cot{(200\ensurement{^{\circ}})} ] \cdot [ 1 - \cot{(25\ensurement{^{\circ}})} \right]
}&\mathbf{
=}& \mathbf{2 }
\end{array}
$}}$$

 

02.07.2015
 #8
avatar+26387 
+5

Hallo CPhill,

 

here a easy proof about Euler Phi-Function: see in german: "Satz von Euler" from Prof. Christian Spannagel PH Heidelberg: https://www.youtube.com/watch?v=DU082wcr40A

 

29.06.2015
 #5
avatar+26387 
0

Hallo CPhill,

 

In number theory, Euler's totient function (or Euler's phi function), denoted as φ(n) or ϕ(n), is an

arithmetic function that counts the positive integers less than or equal to n that are relatively prime to n.

(These integers are sometimes referred to as totatives of n.)

Thus, if n is a positive integer, then φ(n) is the

number of integers k in the range 1 ≤ kn for which the greatest common divisor gcd(n, k) = 1.[1][2]

 

see more... https://en.wikipedia.org/wiki/Euler%27s_totient_function

 

26.06.2015