Processing math: 100%
 

heureka

avatar
Benutzernameheureka
Punkte26397
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26397 
+15

A pair of the identical circles are overlapping each other. Their diameter (D) is 20cm, and the distance between the centers is 10cm. In the grey area, it is possible to inscribe only two  golden rectangles - different in size.

Can you find the area of a larger one?

 

φ=1+52Δc=10 cmD=20 cmcircle:  (x)2=(D2)2line:  (Δc20)+λ(1φ)=xgolden rectangle:  (width2height2)=λ(1φ)   or    width =2λ   and    height =2φλratio =heightwidth=2φλ2λ=φ area   = width  height =4φλ2

 

solve  λ:[(Δc20)+λ(1φ)]2=(x)2=(D2)2[(Δc20)+λ(1φ)]2=(D2)2(Δc20)(Δc20)+2λ(Δc20)(1φ)+λ2(1φ)(1φ)=(D2)2Δ2c4+λΔc+λ2(1+φ2)=D24(1+φ2)λ2+ΔcλD2Δ2c4=0λ=Δ2c+(1+φ2)(D2Δ2c)Δc2(1+φ2) 

 

 area=4φλ2=4φ [Δ2c+(1+φ2)(D2Δ2c)Δc2(1+φ2)]2 area=4φ [Δ2c+(1+φ2)(D2Δ2c)Δc]24(1+φ2)2 area=φ [Δ2c+(1+φ2)(D2Δ2c)Δc]2(1+φ2)2 area=φ(1+φ2)2[Δ2c+(1+φ2)(D2Δ2c)Δc]2|1+φ2=2+φ=5φ area=φ5φ2[Δ2c+(2+φ)(D2Δ2c)Δc]2 area=15φ[Δ2c+(2+φ)(D2Δ2c)Δc]2|1φ=φ1 area=φ15[Δ2c+(2+φ)(D2Δ2c)Δc]2

 

 area=(φ15)[Δ2c+(2+φ)(D2Δ2c)Δc]2

 

 area=(φ15)[Δ2c+(2+φ)(D2Δ2c)Δc]2|Δc=10D=20 area=(φ15)[100+(2+φ)(400100)10]2 area=(φ15)[100+(2+φ)30010]2 area=0.12360679775[34.429786473710]2 area=0.12360679775596.814467151 area=73.7703251354 cm2

 

12.06.2015