Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
1446
2
avatar+1693 

A pair of the identical circles are overlapping each other. Their diameter (D) is 20cm, and the distance between the centers is 10cm. In the grey area, it is possible to inscribe only two  golden rectangles - different in size.

Can you find the area of a larger one?

 

Image result for rectangle inscribed in a overlap of 2 circles

 Jun 11, 2015

Best Answer 

 #2
avatar+26396 
+15

A pair of the identical circles are overlapping each other. Their diameter (D) is 20cm, and the distance between the centers is 10cm. In the grey area, it is possible to inscribe only two  golden rectangles - different in size.

Can you find the area of a larger one?

 

φ=1+52Δc=10 cmD=20 cmcircle:  (x)2=(D2)2line:  (Δc20)+λ(1φ)=xgolden rectangle:  (width2height2)=λ(1φ)   or    width =2λ   and    height =2φλratio =heightwidth=2φλ2λ=φ area   = width  height =4φλ2

 

solve  λ:[(Δc20)+λ(1φ)]2=(x)2=(D2)2[(Δc20)+λ(1φ)]2=(D2)2(Δc20)(Δc20)+2λ(Δc20)(1φ)+λ2(1φ)(1φ)=(D2)2Δ2c4+λΔc+λ2(1+φ2)=D24(1+φ2)λ2+ΔcλD2Δ2c4=0λ=Δ2c+(1+φ2)(D2Δ2c)Δc2(1+φ2) 

 

 area=4φλ2=4φ [Δ2c+(1+φ2)(D2Δ2c)Δc2(1+φ2)]2 area=4φ [Δ2c+(1+φ2)(D2Δ2c)Δc]24(1+φ2)2 area=φ [Δ2c+(1+φ2)(D2Δ2c)Δc]2(1+φ2)2 area=φ(1+φ2)2[Δ2c+(1+φ2)(D2Δ2c)Δc]2|1+φ2=2+φ=5φ area=φ5φ2[Δ2c+(2+φ)(D2Δ2c)Δc]2 area=15φ[Δ2c+(2+φ)(D2Δ2c)Δc]2|1φ=φ1 area=φ15[Δ2c+(2+φ)(D2Δ2c)Δc]2

 

 area=(φ15)[Δ2c+(2+φ)(D2Δ2c)Δc]2

 

 area=(φ15)[Δ2c+(2+φ)(D2Δ2c)Δc]2|Δc=10D=20 area=(φ15)[100+(2+φ)(400100)10]2 area=(φ15)[100+(2+φ)30010]2 area=0.12360679775[34.429786473710]2 area=0.12360679775596.814467151 area=73.7703251354 cm2

 

 Jun 12, 2015
 #1
avatar+130466 
+15

Here's a possible orientation......https://www.desmos.com/calculator/rjfefnmdaw

 

The largest golden rectangle will have its vertces at about (±3.37611,  ±5.46267)    ....and its area will be.....

 

2(3.37611) * 2(5.46267)  ≈ 73.77 cm^2

 

The other golden rectangle will have its vertices  at about (±4.58932, ±2.83636)  ....and it's area will be...

 

2(4.58932)*2(2.83636)  ≈ 52.068 cm^2

 

 

 Jun 11, 2015
 #2
avatar+26396 
+15
Best Answer

A pair of the identical circles are overlapping each other. Their diameter (D) is 20cm, and the distance between the centers is 10cm. In the grey area, it is possible to inscribe only two  golden rectangles - different in size.

Can you find the area of a larger one?

 

φ=1+52Δc=10 cmD=20 cmcircle:  (x)2=(D2)2line:  (Δc20)+λ(1φ)=xgolden rectangle:  (width2height2)=λ(1φ)   or    width =2λ   and    height =2φλratio =heightwidth=2φλ2λ=φ area   = width  height =4φλ2

 

solve  λ:[(Δc20)+λ(1φ)]2=(x)2=(D2)2[(Δc20)+λ(1φ)]2=(D2)2(Δc20)(Δc20)+2λ(Δc20)(1φ)+λ2(1φ)(1φ)=(D2)2Δ2c4+λΔc+λ2(1+φ2)=D24(1+φ2)λ2+ΔcλD2Δ2c4=0λ=Δ2c+(1+φ2)(D2Δ2c)Δc2(1+φ2) 

 

 area=4φλ2=4φ [Δ2c+(1+φ2)(D2Δ2c)Δc2(1+φ2)]2 area=4φ [Δ2c+(1+φ2)(D2Δ2c)Δc]24(1+φ2)2 area=φ [Δ2c+(1+φ2)(D2Δ2c)Δc]2(1+φ2)2 area=φ(1+φ2)2[Δ2c+(1+φ2)(D2Δ2c)Δc]2|1+φ2=2+φ=5φ area=φ5φ2[Δ2c+(2+φ)(D2Δ2c)Δc]2 area=15φ[Δ2c+(2+φ)(D2Δ2c)Δc]2|1φ=φ1 area=φ15[Δ2c+(2+φ)(D2Δ2c)Δc]2

 

 area=(φ15)[Δ2c+(2+φ)(D2Δ2c)Δc]2

 

 area=(φ15)[Δ2c+(2+φ)(D2Δ2c)Δc]2|Δc=10D=20 area=(φ15)[100+(2+φ)(400100)10]2 area=(φ15)[100+(2+φ)30010]2 area=0.12360679775[34.429786473710]2 area=0.12360679775596.814467151 area=73.7703251354 cm2

 

heureka Jun 12, 2015

1 Online Users

avatar