A pair of the identical circles are overlapping each other. Their diameter (D) is 20cm, and the distance between the centers is 10cm. In the grey area, it is possible to inscribe only two golden rectangles - different in size.
Can you find the area of a larger one?
A pair of the identical circles are overlapping each other. Their diameter (D) is 20cm, and the distance between the centers is 10cm. In the grey area, it is possible to inscribe only two golden rectangles - different in size.
Can you find the area of a larger one?
φ=1+√52Δc=10 cmD=20 cmcircle: (→x)2=(D2)2line: (Δc20)+λ(1φ)=→xgolden rectangle: (width2height2)=λ(1φ) or width =2λ and height =2φλratio =heightwidth=2φλ2λ=φ area = width ⋅ height =4φλ2
solve λ:[(Δc20)+λ(1φ)]2=(→x)2=(D2)2[(Δc20)+λ(1φ)]2=(D2)2(Δc20)⋅(Δc20)+2λ(Δc20)⋅(1φ)+λ2(1φ)⋅(1φ)=(D2)2Δ2c4+λΔc+λ2(1+φ2)=D24(1+φ2)λ2+Δcλ−D2−Δ2c4=0λ=√Δ2c+(1+φ2)(D2−Δ2c)−Δc2(1+φ2)
area=4φλ2=4φ [√Δ2c+(1+φ2)(D2−Δ2c)−Δc2(1+φ2)]2 area=4φ [√Δ2c+(1+φ2)(D2−Δ2c)−Δc]24(1+φ2)2 area=φ [√Δ2c+(1+φ2)(D2−Δ2c)−Δc]2(1+φ2)2 area=φ(1+φ2)2[√Δ2c+(1+φ2)(D2−Δ2c)−Δc]2|1+φ2=2+φ=√5φ area=φ5φ2[√Δ2c+(2+φ)(D2−Δ2c)−Δc]2 area=15φ[√Δ2c+(2+φ)(D2−Δ2c)−Δc]2|1φ=φ−1 area=φ−15[√Δ2c+(2+φ)(D2−Δ2c)−Δc]2
area=(φ−15)[√Δ2c+(2+φ)(D2−Δ2c)−Δc]2
area=(φ−15)[√Δ2c+(2+φ)(D2−Δ2c)−Δc]2|Δc=10D=20 area=(φ−15)[√100+(2+φ)(400−100)−10]2 area=(φ−15)[√100+(2+φ)300−10]2 area=0.12360679775⋅[34.4297864737−10]2 area=0.12360679775⋅596.814467151 area=73.7703251354 cm2
Here's a possible orientation......https://www.desmos.com/calculator/rjfefnmdaw
The largest golden rectangle will have its vertces at about (±3.37611, ±5.46267) ....and its area will be.....
2(3.37611) * 2(5.46267) ≈ 73.77 cm^2
The other golden rectangle will have its vertices at about (±4.58932, ±2.83636) ....and it's area will be...
2(4.58932)*2(2.83636) ≈ 52.068 cm^2
A pair of the identical circles are overlapping each other. Their diameter (D) is 20cm, and the distance between the centers is 10cm. In the grey area, it is possible to inscribe only two golden rectangles - different in size.
Can you find the area of a larger one?
φ=1+√52Δc=10 cmD=20 cmcircle: (→x)2=(D2)2line: (Δc20)+λ(1φ)=→xgolden rectangle: (width2height2)=λ(1φ) or width =2λ and height =2φλratio =heightwidth=2φλ2λ=φ area = width ⋅ height =4φλ2
solve λ:[(Δc20)+λ(1φ)]2=(→x)2=(D2)2[(Δc20)+λ(1φ)]2=(D2)2(Δc20)⋅(Δc20)+2λ(Δc20)⋅(1φ)+λ2(1φ)⋅(1φ)=(D2)2Δ2c4+λΔc+λ2(1+φ2)=D24(1+φ2)λ2+Δcλ−D2−Δ2c4=0λ=√Δ2c+(1+φ2)(D2−Δ2c)−Δc2(1+φ2)
area=4φλ2=4φ [√Δ2c+(1+φ2)(D2−Δ2c)−Δc2(1+φ2)]2 area=4φ [√Δ2c+(1+φ2)(D2−Δ2c)−Δc]24(1+φ2)2 area=φ [√Δ2c+(1+φ2)(D2−Δ2c)−Δc]2(1+φ2)2 area=φ(1+φ2)2[√Δ2c+(1+φ2)(D2−Δ2c)−Δc]2|1+φ2=2+φ=√5φ area=φ5φ2[√Δ2c+(2+φ)(D2−Δ2c)−Δc]2 area=15φ[√Δ2c+(2+φ)(D2−Δ2c)−Δc]2|1φ=φ−1 area=φ−15[√Δ2c+(2+φ)(D2−Δ2c)−Δc]2
area=(φ−15)[√Δ2c+(2+φ)(D2−Δ2c)−Δc]2
area=(φ−15)[√Δ2c+(2+φ)(D2−Δ2c)−Δc]2|Δc=10D=20 area=(φ−15)[√100+(2+φ)(400−100)−10]2 area=(φ−15)[√100+(2+φ)300−10]2 area=0.12360679775⋅[34.4297864737−10]2 area=0.12360679775⋅596.814467151 area=73.7703251354 cm2