Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
901
2
avatar

what is (a+b)^3

 Jun 11, 2015

Best Answer 

 #2
avatar+26396 
+5

(a+b)^3 ?

 

Let a = x:

If (x+b)3=0   then  (x+b)(x+b)(x+b)=0  is a Polynom with the roots x1=bx2=bx3=b.

 

Vieta's formulas:

If x3+Ax2+Bx+C=0, then

 

A=(x1+x2+x3)B=x1x2+x1x3+x2x3C=(x1x2x3)A=[(b)+(b)+(b)]=[3(b)]=3bB=(b)(b)+(b)(b)+(b)(b)=3b2C=[(b)(b)(b)]=[3b3]=b3

so we have:

(x+b)3=x3+Ax2+Bx+C=0(x+b)3=x3+(3b)x2+(3b2)x+(b3)|x=a(a+b)3=a3+(3b)a2+(3b2)a+(b3)(a+b)3=a3+3a2b+3ab2+b3

 

 Jun 11, 2015
 #1
avatar+33654 
+5

It can be expanded as:

 

(a+b)3=a3+3a2b+3ab2+b3

.

 Jun 11, 2015
 #2
avatar+26396 
+5
Best Answer

(a+b)^3 ?

 

Let a = x:

If (x+b)3=0   then  (x+b)(x+b)(x+b)=0  is a Polynom with the roots x1=bx2=bx3=b.

 

Vieta's formulas:

If x3+Ax2+Bx+C=0, then

 

A=(x1+x2+x3)B=x1x2+x1x3+x2x3C=(x1x2x3)A=[(b)+(b)+(b)]=[3(b)]=3bB=(b)(b)+(b)(b)+(b)(b)=3b2C=[(b)(b)(b)]=[3b3]=b3

so we have:

(x+b)3=x3+Ax2+Bx+C=0(x+b)3=x3+(3b)x2+(3b2)x+(b3)|x=a(a+b)3=a3+(3b)a2+(3b2)a+(b3)(a+b)3=a3+3a2b+3ab2+b3

 

heureka Jun 11, 2015

2 Online Users

avatar