Processing math: 100%
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26396 
+8

 limnn(n2+1n)= limnn(n2n2(n2+1)n)= limnn(n1+1n2n)= limnnn(1+1n21)= limnnn(1+1n21)1+1n2+11+1n2+1= limnnn(1+1n212)11+1n2+1= limnnnn211+1n2+1= limnnn1+1n2+1= limnnn21+1n2+1

= limn1n1+1n2+1= limn1n1+(1n)2+1| limn1n=0 = 01+02+1= 01+1= 01+1= 02=0

.
27.05.2015
 #1
avatar+26396 
+5
26.05.2015
 #1
avatar+26396 
+13

Both circles have a radius  r=1.  Can you make these 3 regions,  A  B  and  C, to occupy the equal areas ?

central angle=φrad

areaB=2[πr2φrad2π12r2sin(φrad)]areaA=areaB=areaCareacircle1=areacircle2=πr2areacircle1areaB=areaBareacircle1=2areaBπr2=2areaBπr2=22[πr2φrad2π12r2sin(φrad)]πr2=2r2φrad2r2sin(φrad)|:r2π=2φrad2sin(φrad)|:2π2=φradsin(φrad)

φradsin(φrad)=π2

The Newton-Raphson method in one variable is implemented as follows:


Given a function ƒ defined over the reals x, and its derivative ƒ',

we begin with a first guess x0 for a root of the function f.

Provided the function satisfies all the assumptions made in the derivation of the formula,

a better approximation x1 is

 x1=x0f(x0)f(x0)

φrad1=φrad0φrad0sin(φrad0)π21cos(φrad0)

Iteration:

φrad0=2φrad1=2.33901410590φrad2=2.31006319657φrad3=2.30988146730φrad4=2.30988146001φrad=2.30988146001

areaB=2[πr2φrad2π12r2sin(φrad)]|r=1areaB=2[πφrad2π12sin(φrad)]areaB=φradsin(φrad)areaB=2.30988146001sin(2.30988146001)=π2areaA=areaC=πr2areaB|r=1areaA=areaC=ππ2=π2

.
21.05.2015