Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #6
avatar+26396 
+15

From the figure shown below, DE is the diameter of circle A and BC is the radius of circle B. If DE = 60 cm and AC = 10 cm, find the area of the shaded region

h=\overline{AC}=10~\rm{cm}  \qquad r_{A} = \frac{ \overline{DE} }{2}= 30~\rm{cm}  \qquad r_{B} = \overline{CB} \\\\  r_A^2 = h\cdot(2\cdot r_B-h)\qquad \Rightarrow\qquad   r_B = \frac{h+\dfrac{r_A^2}{h} }{2}=\frac {10+90}{2}= 50 ~\rm{cm}\\\\  \small{\text{Angle DBE $=B   \qquad B\ensurement{^{\circ}} = 2\cdot\arcsin{ \left( \dfrac{r_A}{r_B} \right)} $}} \\\\  \small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}  -\left[  \pi \cdot r_B^2 \cdot \frac{B\ensurement{^{\circ}} } { 360\ensurement{^{\circ}} } - \frac{1}{2}\cdot (2\cdot r_A)\cdot(r_B - h)  \right]  $}} \\\\  \small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}  -\left[  \pi \cdot r_B^2 \cdot \frac{ 2\cdot\arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 360\ensurement{^{\circ}} } - \frac{1}{2}\cdot (2\cdot r_A)\cdot(r_B - h)  \right]  $}} \\\\  \small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}  -\left[  \pi \cdot r_B^2 \cdot \frac{ \arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 180\ensurement{^{\circ}} } - r_A\cdot(r_B - h)  \right]  $}}

\small{ A_{Blue}= \pi\cdot r_B^2  \left(  1- \frac{ \arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 180\ensurement{^{\circ}} }  \right)  - \pi \frac{\cdot r_A^2}{2}+ r_A\cdot(r_B - h)  \right]  $}} \\\\   \small{ A_{Blue}= \pi\cdot 50^2  \left(  1- \frac{ \arcsin{ \left( \dfrac{30}{50} \right)} } { 180\ensurement{^{\circ}} }  \right)  - \pi \frac{\cdot 30^2}{2}+ 30\cdot(50 - 10)  \right]  $}} \\\\   \small{ A_{Blue}= \pi\cdot 50^2\cdot  0.7951672353008667 - \pi \frac{\cdot 30^2}{2}+ 1200\right]  $}} \\\\   \small{ A_{Blue}= 6031.5121678758663628914 ~\rm{cm^2}  $}}\\\\  A_{Blue} \approx 6031.5122 ~\rm{cm^2}

.
19.05.2015
 #2
avatar+26396 
+15

Six points on a circle are given. Four different chords joining pairs of the six points are selected at random. What is the probability that the four chords form the sides of a convex quadrilateral ?

Let the six points 1, 2, 3, 4, 5, 6

All convex quadrilateral  are all selection(4 Numbers)  in ascending order from the set 1, 2, 3, 4, 5, 6

\rm{convex~quadrilateral } = \bordermatrix{Points& 1 & 2 & 3 & 4 & 5 & 6 \cr  1. &1 &2 &3 &4 & & \cr  2. &1 &2 &3 & &5 & \cr  3. &1 &2 &3 & & &6 \cr  4. &1 &2 & &4 &5 & \cr  5. &1 &2 & &4 & &6 \cr  6. &1 &2 & & &5 &6 \cr  7. &1 & &3 &4 &5 & \cr  8. &1 & &3 &4 & &6 \cr  9. &1 & &3 & &5 &6 \cr  10.&1 & & &4 &5 &6 \cr  11.& &2 &3 &4 &5 & \cr  12.& &2 &3 &4 & &6 \cr  13.& &2 &3 & &5 &6 \cr  14.& &2 & &4 &5 &6 \cr  15.& & &3 &4 &5 &6 \cr} = \binom64

Point-connections:

1234561x12131415162x232425263x3435364x45465x566x=(62)=15

Four  chords from 15 pont-connections

  =((62)4)=(154)

 

the probability that the four chords form the sides of a convex quadrilateral

 =(64)(154)=6!4!(64)!15!4!(154)!=6!2!11!15!=345612131415=363276=0.01098901099

.
17.05.2015