heureka

avatar
Benutzernameheureka
Punkte26387
Membership
Stats
Fragen 17
Antworten 5678

 #6
avatar+26387 
+15

From the figure shown below, DE is the diameter of circle A and BC is the radius of circle B. If DE = 60 cm and AC = 10 cm, find the area of the shaded region

$$h=\overline{AC}=10~\rm{cm}
\qquad r_{A} = \frac{ \overline{DE} }{2}= 30~\rm{cm}
\qquad r_{B} = \overline{CB} \\\\
r_A^2 = h\cdot(2\cdot r_B-h)\qquad \Rightarrow\qquad
r_B = \frac{h+\dfrac{r_A^2}{h} }{2}=\frac {10+90}{2}= 50 ~\rm{cm}\\\\
\small{\text{Angle DBE $=B
\qquad B\ensurement{^{\circ}} = 2\cdot\arcsin{ \left( \dfrac{r_A}{r_B} \right)} $}} \\\\
\small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}
-\left[
\pi \cdot r_B^2 \cdot \frac{B\ensurement{^{\circ}} } { 360\ensurement{^{\circ}} } - \frac{1}{2}\cdot (2\cdot r_A)\cdot(r_B - h)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}
-\left[
\pi \cdot r_B^2 \cdot \frac{ 2\cdot\arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 360\ensurement{^{\circ}} } - \frac{1}{2}\cdot (2\cdot r_A)\cdot(r_B - h)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot r_B^2 - \pi \frac{\cdot r_A^2}{2}
-\left[
\pi \cdot r_B^2 \cdot \frac{ \arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 180\ensurement{^{\circ}} } - r_A\cdot(r_B - h)
\right]
$}}$$

$$\small{ A_{Blue}= \pi\cdot r_B^2
\left(
1- \frac{ \arcsin{ \left( \dfrac{r_A}{r_B} \right)} } { 180\ensurement{^{\circ}} }
\right)
- \pi \frac{\cdot r_A^2}{2}+ r_A\cdot(r_B - h)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot 50^2
\left(
1- \frac{ \arcsin{ \left( \dfrac{30}{50} \right)} } { 180\ensurement{^{\circ}} }
\right)
- \pi \frac{\cdot 30^2}{2}+ 30\cdot(50 - 10)
\right]
$}} \\\\
\small{ A_{Blue}= \pi\cdot 50^2\cdot
0.7951672353008667 - \pi \frac{\cdot 30^2}{2}+ 1200\right]
$}} \\\\
\small{ A_{Blue}= 6031.5121678758663628914 ~\rm{cm^2}
$}}\\\\
A_{Blue} \approx 6031.5122 ~\rm{cm^2}$$

.
19.05.2015
 #2
avatar+26387 
+15

Six points on a circle are given. Four different chords joining pairs of the six points are selected at random. What is the probability that the four chords form the sides of a convex quadrilateral ?

Let the six points 1, 2, 3, 4, 5, 6

All convex quadrilateral  are all selection(4 Numbers)  in ascending order from the set 1, 2, 3, 4, 5, 6

$$\rm{convex~quadrilateral } = \bordermatrix{Points& 1 & 2 & 3 & 4 & 5 & 6 \cr
1. &1 &2 &3 &4 & & \cr
2. &1 &2 &3 & &5 & \cr
3. &1 &2 &3 & & &6 \cr
4. &1 &2 & &4 &5 & \cr
5. &1 &2 & &4 & &6 \cr
6. &1 &2 & & &5 &6 \cr
7. &1 & &3 &4 &5 & \cr
8. &1 & &3 &4 & &6 \cr
9. &1 & &3 & &5 &6 \cr
10.&1 & & &4 &5 &6 \cr
11.& &2 &3 &4 &5 & \cr
12.& &2 &3 &4 & &6 \cr
13.& &2 &3 & &5 &6 \cr
14.& &2 & &4 &5 &6 \cr
15.& & &3 &4 &5 &6 \cr} = \binom64$$

Point-connections:

$$\small{\text{$
\begin{array}{|c|c|c|c|c|c|c|}
\hline
&1&2&3&4&5&6 \\
\hline
1&x&1\Rightarrow2&1\Rightarrow3&1\Rightarrow4&1\Rightarrow5&1\Rightarrow6 \\
2& &x&2\Rightarrow3&2\Rightarrow4&2\Rightarrow5&2\Rightarrow6 \\
3& & &x&3\Rightarrow4&3\Rightarrow5&3\Rightarrow6 \\
4& & & &x&4\Rightarrow5&4\Rightarrow6 \\
5& & & & &x&5\Rightarrow6 \\
6& & & & & &x \\
\hline
\end{array}
$}} = \binom62=15$$

Four  chords from 15 pont-connections

  $$=\binom{\binom62}{4}=\binom{15}{4}$$

 

the probability that the four chords form the sides of a convex quadrilateral

 $$\small{\text{$
\begin{array}{rcl}
&=&\dfrac{\binom64}{\binom{15}{4}}
=\dfrac{ \dfrac{6!}{4!\cdot(6-4)!} }{ \dfrac{15!}{4!\cdot(15-4)!} }
=\dfrac{6!}{2!} \cdot \dfrac{11!}{15!}
=\dfrac{3\cdot 4\cdot 5\cdot 6}{ 12\cdot 13 \cdot 14 \cdot 15}
=\dfrac{36}{3276}
=0.01098901099
\end{array}
$}}$$

.
17.05.2015