Six points on a circle are given. Four different chords joining pairs of the six points are selected at random. What is the probability that the four chords form the sides of a convex quadrilateral ?
Let the six points 1, 2, 3, 4, 5, 6
All convex quadrilateral are all selection(4 Numbers) in ascending order from the set 1, 2, 3, 4, 5, 6
\rm{convex~quadrilateral } = \bordermatrix{Points& 1 & 2 & 3 & 4 & 5 & 6 \cr 1. &1 &2 &3 &4 & & \cr 2. &1 &2 &3 & &5 & \cr 3. &1 &2 &3 & & &6 \cr 4. &1 &2 & &4 &5 & \cr 5. &1 &2 & &4 & &6 \cr 6. &1 &2 & & &5 &6 \cr 7. &1 & &3 &4 &5 & \cr 8. &1 & &3 &4 & &6 \cr 9. &1 & &3 & &5 &6 \cr 10.&1 & & &4 &5 &6 \cr 11.& &2 &3 &4 &5 & \cr 12.& &2 &3 &4 & &6 \cr 13.& &2 &3 & &5 &6 \cr 14.& &2 & &4 &5 &6 \cr 15.& & &3 &4 &5 &6 \cr} = \binom64
Point-connections:
1234561x1⇒21⇒31⇒41⇒51⇒62x2⇒32⇒42⇒52⇒63x3⇒43⇒53⇒64x4⇒54⇒65x5⇒66x=(62)=15
Four chords from 15 pont-connections
=((62)4)=(154)
the probability that the four chords form the sides of a convex quadrilateral
=(64)(154)=6!4!⋅(6−4)!15!4!⋅(15−4)!=6!2!⋅11!15!=3⋅4⋅5⋅612⋅13⋅14⋅15=363276=0.01098901099

.