limn→∞√n⋅(√n2+1−n)= limn→∞√n⋅(√n2n2⋅(n2+1)−n)= limn→∞√n⋅(n⋅√1+1n2−n)= limn→∞√n⋅n⋅(√1+1n2−1)= limn→∞√n⋅n⋅(√1+1n2−1)√1+1n2+1√1+1n2+1= limn→∞√n⋅n⋅(1+1n2−12)1√1+1n2+1= limn→∞√n⋅nn2⋅1√1+1n2+1= limn→∞√nn√1+1n2+1= limn→∞√nn2√1+1n2+1
= limn→∞√1n√1+1n2+1= limn→∞√1n√1+(1n)2+1| limn→∞1n=0 = √0√1+02+1= 0√1+1= 01+1= 02=0
limn→∞√n⋅(√n2+1−n)= limn→∞√n⋅(√n2n2⋅(n2+1)−n)= limn→∞√n⋅(n⋅√1+1n2−n)= limn→∞√n⋅n⋅(√1+1n2−1)= limn→∞√n⋅n⋅(√1+1n2−1)√1+1n2+1√1+1n2+1= limn→∞√n⋅n⋅(1+1n2−12)1√1+1n2+1= limn→∞√n⋅nn2⋅1√1+1n2+1= limn→∞√nn√1+1n2+1= limn→∞√nn2√1+1n2+1
= limn→∞√1n√1+1n2+1= limn→∞√1n√1+(1n)2+1| limn→∞1n=0 = √0√1+02+1= 0√1+1= 01+1= 02=0