Find the equation of the straight line which is parallel to the line whose equation is 3x + 4y = 0, and which passes through the point of intersection of the lines x - 2y = a and x + 3y = 2a. Express the answer in the form Ax + By = C
I. The slope of the new straight line:
$$\small{\text{$
3x + 4y = 0 \rm{~~or~~}y = -\frac34 \cdot x \rm{~~so~the ~ slope ~is ~~} -\frac34
$.}}
\small{\text{$
\rm{~The ~ slope ~of~a ~parallel ~line ~is ~ also ~} -\frac34
$}}$$
II. intersection of the lines x - 2y = a and x + 3y = 2a:
$$\small{\text{$
\begin{array}{lrcl}
(1): & x - 2y &=& a \\
(2): & x+3y &=& 2a\\
\hline
(2)-(1): & x-x + 3y-(-2y) &=& 2a-a \\
& 3y+2y &=& a \\
& 5y &=& a \\
& \textcolor[rgb]{1,0,0}{y} & \textcolor[rgb]{1,0,0}{=}& \textcolor[rgb]{1,0,0}{\frac15 a}\\
\hline
(1): & x - 2y &=& a \\
& x - 2y &=& a \\
& x &=& a + 2y \quad | \quad y = \frac15 a \\
& x &=& a + 2(\frac15 a) \\
& \textcolor[rgb]{1,0,0}{x} & \textcolor[rgb]{1,0,0}{=}& \textcolor[rgb]{1,0,0}{\frac75 a} \\
\end{array}
$}}$$
The intersection is $$(~\frac75 a ~|~ \frac15 a~)$$
III. Find the equation of the straight line:
$$\small{\text{$
\begin{array}{rcl}
y &=&mx+b \qquad | \qquad m = -\frac34 \\
y&=&-\frac34 \cdot x+b
\end{array}
$}}$$
find b:
$$\small{\text{$
\begin{array}{rcl}
y_s&=&-\frac34 \cdot x_s+b \qquad | \qquad x_s = \frac75 a \rm{~~and~~} y_s = \frac15 a\\\\
\frac15 a &=&-\frac34 \cdot \frac75 a+b \\\\
b&=& \frac15 a+\frac34 \cdot \frac75 a \\\\
b&=& \frac{25}{20} a \\\\
\textcolor[rgb]{1,0,0}{b}&\textcolor[rgb]{1,0,0}{=}& \textcolor[rgb]{1,0,0}{\frac{5}{4} a} \\\\
\end{array}
$}}$$
The equation of the straight line is:
$$\small{\text{$
\begin{array}{lrcl}
&y &=& mx+b \qquad | \qquad m = -\frac34 \rm{~~and~~} b = \frac54 a\\\\
&\mathbf{y} &\mathbf{=}& \mathbf{-\frac34 \cdot x + \frac{5}{4} a}\\\\
\rm{or~~} \\\\
&\mathbf{\frac34 \cdot x } + 1\cdot \mathbf{y} &\mathbf{=}& \mathbf{ \frac{5}{4} a }
\end{array}
$}}$$
.