Loading [MathJax]/jax/output/SVG/jax.js
 

heureka

avatar
Benutzernameheureka
Punkte26396
Membership
Stats
Fragen 17
Antworten 5678

 #2
avatar+26396 
+5

A:

\small{\text{$  \begin{array}{rcl}  \mathbf{  \left[~x \left( x+2 \right) \right~]^3 + 8 x^3 } &\mathbf{  =}& \mathbf{0} \\  x^3 \left( x+2 \right)^3 + 8 x^3 &=& 0\\  x^3 \left( x^3+3x^2\cdot 2 + 3x\cdot 2^2 + 2^3 \right) + 8 x^3 &=& 0\\  x^3 \left( x^3+6x^2 + 12x + 8 \right) + 8 x^3 &=& 0\\  x^3 \left( x^3+6x^2 + 12x + 8 +8\right) &=& 0\\  x^3 \left( x^3+6x^2 + 12x + 16 \right) &=& 0\\  \end{array}   $}}

I. First solution

x3=0x=0

II. Second solution

x3+6x2+12x+16=(x+4)(x2+2x+4)=0x=4

III. No more solutions

x2+2x+4=0

The parabola has no solutions, because the vertex of this parabola (-1 | 3) lies above the x-axis

 

B:

\small{\text{$  \begin{array}{rcl}  \mathbf{  \left[~x \left( x+2 \right) \right~]^3 + 8 x^3 } &\mathbf{  =}& \mathbf{0} \\  x^3 \left( x+2 \right)^3 + 8 x^3 &=& 0\\  x^3 \left[~~\left( x+2 \right)^3 + 8~~\right] &=& 0\\  \end{array}   $}}

I. First solution:

x3=0x=0

 

II. Second solution:

(x+2)3+8=0(x+2)3=8|3x+2=38x+2=2x=22x=4

.
08.06.2015
 #2
avatar+26396 
+5

Find the equation of the straight line which is parallel to the line whose equation is 3x + 4y = 0, and which passes through the point of intersection of the lines x - 2y = a and x + 3y = 2a. Express the answer in the form Ax + By = C

 

I. The slope of the new straight line:

3x+4y=0  or  y=34x  so the slope is  34. The slope of a parallel line is also 34

II. intersection of the lines x - 2y = a and x + 3y = 2a:

(1):x2y=a(2):x+3y=2a(2)(1):xx+3y(2y)=2aa3y+2y=a5y=ay=15a(1):x2y=ax2y=ax=a+2y|y=15ax=a+2(15a)x=75a

The intersection is ( 75a | 15a )

III. Find the equation of the straight line:

y=mx+b|m=34y=34x+b

find b:

ys=34xs+b|xs=75a  and  ys=15a15a=3475a+bb=15a+3475ab=2520ab=54a

The equation of the straight line is:

y=mx+b|m=34  and  b=54ay=34x+54aor  34x+1y=54a

.
08.06.2015
 #1
avatar+26396 
+5

what is the sum of the interior angles of a polygon with 30 sides ?

see Interior Angles of Polygons: http://www.mathsisfun.com/geometry/interior-angles-polygons.html

 

 Sum of Interior Angles = (n-2) × 180°

n = 30 so the Sum of Interior Angles = (30-2) × 180° = 28 × 180° = 5040°

08.06.2015