$${\left({{\mathtt{2}}}^{{\mathtt{4}}}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{4}}}}\right)} = {\mathtt{2}}$$
$${\sqrt[{{\mathtt{{\mathtt{4}}}}}]{{\mathtt{10}}}} = {\sqrt[{{\mathtt{{\mathtt{4}}}}}]{{\mathtt{2}}}}{\mathtt{\,\times\,}}{\sqrt[{{\mathtt{{\mathtt{4}}}}}]{{\mathtt{5}}}}$$
$${\sqrt[{{\mathtt{{\mathtt{4}}}}}]{{\mathtt{5}}}}{\mathtt{\,\times\,}}{\sqrt[{{\mathtt{-{\mathtt{4}}}}}]{{\mathtt{5}}}} = {\mathtt{1}}$$
$${\sqrt[{{\mathtt{{\mathtt{4}}}}}]{{\mathtt{8}}}} = {\sqrt[{{\mathtt{{\mathtt{4}}}}}]{\left({{\mathtt{2}}}^{{\mathtt{3}}}\right)}}$$
$${\sqrt[{{\mathtt{{\mathtt{4}}}}}]{{\mathtt{2}}}}{\mathtt{\,\times\,}}{\sqrt[{{\mathtt{{\mathtt{4}}}}}]{\left({{\mathtt{2}}}^{{\mathtt{3}}}\right)}} = {\mathtt{2}}$$