$${\frac{{\mathtt{3}}}{{\sqrt{{\mathtt{2}}}}}} = {\frac{{\mathtt{3}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{2}}}}}{{\mathtt{2}}}} = {\mathtt{1.5}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{2}}}} = {\mathtt{2.121\: \!3}}$$
$${\mathtt{1.5}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{2}}}} = {\mathtt{2.121\: \!320\: \!343\: \!559\: \!642\: \!6}}$$
$${\left({\frac{{\mathtt{3}}}{{\mathtt{4}}}}{\mathtt{\,\small\textbf+\,}}{{\mathtt{2}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)}\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{3}}}^{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)} = {\frac{\left({{\mathtt{3}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{2}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{6}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{3}}}^{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}\right)}{{{\mathtt{2}}}^{\left({\frac{{\mathtt{2}}}{{\mathtt{3}}}}\right)}}}$$
= $${{\mathtt{3}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{2}}}^{{\mathtt{\,-\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)} = {\frac{{\mathtt{3}}}{{{\mathtt{2}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)}}} = {\frac{{\mathtt{3}}}{{\sqrt{{\mathtt{2}}}}}}$$
lieber radix!
danke dir!
kannst du mir sagen, wie ich bei dem ersten zwischenschritt auf
x 3 hoch 2/3 komme?
thx!