+0  
 
0
242
4
avatar

winkel aus tangens ermitteln

Guest 11.04.2017
Sortierung: 

4+0 Answers

 #1
avatar+18766 
+5

winkel aus tangens ermitteln

 

Mit Hilfe des Arkustangens kann \( {\displaystyle \varphi }\) wie folgt  bestimmt werden:

 

\({\displaystyle \varphi ={ \begin{cases} \arctan {(\frac {y}{x})}&\mathrm {f{\ddot {u}}r} \ x>0\\ \arctan {(\frac {y}{x})}+180^{\circ} &\mathrm {f{\ddot {u}}r} \ x<0,\ y\geq 0\\ \arctan {(\frac {y}{x})}-180^{\circ} &\mathrm {f{\ddot {u}}r} \ x<0,\ y<0\\ 90^{\circ} &\mathrm {f{\ddot {u}}r} \ x=0,\ y>0\\ 270^{\circ} &\mathrm {f{\ddot {u}}r} \ x=0,\ y<0\\ \end{cases}}} \)

 

laugh

heureka  11.04.2017
 #2
avatar+91226 
+2

Thanks Heureka,

 

Or maybe just 

 

\(If\\ tan \theta = 0.87\\ then\\ \theta = tan^{-1}(0.87)\\\text{Which can also be written as }\\\theta=atan(0.87)\\ \)

 

atan(0.87) = 0.715991114416

Melody  12.04.2017
 #3
avatar
+1

Was? 

Gast 14.04.2017
 #4
avatar+7155 
+1

\(tan^{-1}(0.87)=\frac{1}{tan(0.87)}=\frac{1}{1.18532..}=0.8465..\)

asinus  17.04.2017

18 Benutzer online

avatar
avatar
avatar
Wir verwenden Cookies um Inhalt und Werbung dieser Webseite zu personalisieren und Social Mediainhalte bereitzustellen. Auch teilen wir Nutzungverhalten unserer Webseite mit unseren Werbe-, Analyse- und Social Media- Partnern.  Siehe Details