+0  
 
0
1198
4
avatar

winkel aus tangens ermitteln

 11.04.2017
 #1
avatar+26385 
+5

winkel aus tangens ermitteln

 

Mit Hilfe des Arkustangens kann \( {\displaystyle \varphi }\) wie folgt  bestimmt werden:

 

\({\displaystyle \varphi ={ \begin{cases} \arctan {(\frac {y}{x})}&\mathrm {f{\ddot {u}}r} \ x>0\\ \arctan {(\frac {y}{x})}+180^{\circ} &\mathrm {f{\ddot {u}}r} \ x<0,\ y\geq 0\\ \arctan {(\frac {y}{x})}-180^{\circ} &\mathrm {f{\ddot {u}}r} \ x<0,\ y<0\\ 90^{\circ} &\mathrm {f{\ddot {u}}r} \ x=0,\ y>0\\ 270^{\circ} &\mathrm {f{\ddot {u}}r} \ x=0,\ y<0\\ \end{cases}}} \)

 

laugh

 11.04.2017
 #2
avatar+118652 
+2

Thanks Heureka,

 

Or maybe just 

 

\(If\\ tan \theta = 0.87\\ then\\ \theta = tan^{-1}(0.87)\\\text{Which can also be written as }\\\theta=atan(0.87)\\ \)

 

atan(0.87) = 0.715991114416

 12.04.2017
 #3
avatar
+1

Was? 

 14.04.2017
 #4
avatar+14983 
+1

\(tan^{-1}(0.87)=\frac{1}{tan(0.87)}=\frac{1}{1.18532..}=0.8465..\)

.
 17.04.2017

1 Benutzer online