Die Teiler:
Primfaktorzerlegung
binär 2 3 5 7
1 0 0 0 1 = 0 * 2 + 0 * 3 + 0 * 5 + 1 * 7 = 7
2 0 0 1 0 = 0 * 2 + 0 * 3 + 1 * 5 + 0 * 7 = 5
3 0 0 1 1 = 0 * 2 + 0 * 3 + 1 * 5 + 1 * 7 = 35
4 0 1 0 0 = 0 * 2 + 1 * 3 + 0 * 5 + 0 * 7 = 3
5 0 1 0 1 = 0 * 2 + 1 * 3 + 0 * 5 + 1 * 7 = 21
6 0 1 1 0 = 0 * 2 + 1 * 3 + 1 * 5 + 0 * 7 = 15
7 0 1 1 1 = 0 * 2 + 1 * 3 + 1 * 5 + 1 * 7 = 105
8 1 0 0 0 = 1 * 2 + 0 * 3 + 0 * 5 + 0 * 7 = 2
9 1 0 0 1 = 1 * 2 + 0 * 3 + 0 * 5 + 1 * 7 = 14
10 1 0 1 0 = 1 * 2 + 0 * 3 + 1 * 5 + 0 * 7 = 10
11 1 0 1 1 = 1 * 2 + 0 * 3 + 1 * 5 + 1 * 7 = 70
12 1 1 0 0 = 1 * 2 + 1 * 3 + 0 * 5 + 0 * 7 = 6
13 1 1 0 1 = 1 * 2 + 1 * 3 + 0 * 5 + 1 * 7 = 42
14 1 1 1 0 = 1 * 2 + 1 * 3 + 1 * 5 + 0 * 7 = 30
15 1 1 1 1 = 1 * 2 + 1 * 3 + 1 * 5 + 1 * 7 = 210
und die Zahl 1 als sechzenten Teiler
Wieviele Elemente hat die Menge {k ∈ N | k teilt 210}
Primfaktorzerlegung: $$210=2^{\textcolor[rgb]{1,0,0}{1}}*3^{\textcolor[rgb]{0,1,0}{1}}*5^{\textcolor[rgb]{0,0,1}{1}}*7^{\textcolor[rgb]{0,1,1}{1}}$$
$$\text{Anzahl Teiler }=
(1+\textcolor[rgb]{1,0,0}{1})
*(1+\textcolor[rgb]{0,1,0}{1})
*(1+\textcolor[rgb]{0,0,1}{1})
*(1+\textcolor[rgb]{0,1,1}{1})=2*2*2*2 = 16$$
Die Teiler:
Primfaktorzerlegung
binär 2 3 5 7
1 0 0 0 1 = 0 * 2 + 0 * 3 + 0 * 5 + 1 * 7 = 7
2 0 0 1 0 = 0 * 2 + 0 * 3 + 1 * 5 + 0 * 7 = 5
3 0 0 1 1 = 0 * 2 + 0 * 3 + 1 * 5 + 1 * 7 = 35
4 0 1 0 0 = 0 * 2 + 1 * 3 + 0 * 5 + 0 * 7 = 3
5 0 1 0 1 = 0 * 2 + 1 * 3 + 0 * 5 + 1 * 7 = 21
6 0 1 1 0 = 0 * 2 + 1 * 3 + 1 * 5 + 0 * 7 = 15
7 0 1 1 1 = 0 * 2 + 1 * 3 + 1 * 5 + 1 * 7 = 105
8 1 0 0 0 = 1 * 2 + 0 * 3 + 0 * 5 + 0 * 7 = 2
9 1 0 0 1 = 1 * 2 + 0 * 3 + 0 * 5 + 1 * 7 = 14
10 1 0 1 0 = 1 * 2 + 0 * 3 + 1 * 5 + 0 * 7 = 10
11 1 0 1 1 = 1 * 2 + 0 * 3 + 1 * 5 + 1 * 7 = 70
12 1 1 0 0 = 1 * 2 + 1 * 3 + 0 * 5 + 0 * 7 = 6
13 1 1 0 1 = 1 * 2 + 1 * 3 + 0 * 5 + 1 * 7 = 42
14 1 1 1 0 = 1 * 2 + 1 * 3 + 1 * 5 + 0 * 7 = 30
15 1 1 1 1 = 1 * 2 + 1 * 3 + 1 * 5 + 1 * 7 = 210
und die Zahl 1 als sechzenten Teiler