Wieso ist (t^2)/((t^3)-1) = (1/3)*ln(t^3-1)
\(\frac{t^2}{t^3-1}=\frac{ln(t^3-1)}{3}\\ \frac{3\cdot t^2}{t^3-1}=ln(t^3-1)\)
\(Nur\ f\ddot ur\ {\color{blue}t=1,924626}\ ist\)
\(\frac{t^2}{t^3-1}\approx \frac{ln(t^3-1)}{3}\)
\(\frac{3\cdot t^2}{t^3-1}-ln(t^3-1)\approx 0\)
\(\frac{3\cdot t^2}{t^3-1}-ln(t^3-1)=15,84902\times 10^{-8}\)
!